Metamath Proof Explorer


Theorem naddov2

Description: Alternate expression for natural addition. (Contributed by Scott Fenton, 26-Aug-2024)

Ref Expression
Assertion naddov2 A On B On A + B = x On | y B A + y x z A z + B x

Proof

Step Hyp Ref Expression
1 naddov A On B On A + B = x On | + A × B x + A × B x
2 snssi A On A On
3 onss B On B On
4 xpss12 A On B On A × B On × On
5 2 3 4 syl2an A On B On A × B On × On
6 naddfn + Fn On × On
7 6 fndmi dom + = On × On
8 5 7 sseqtrrdi A On B On A × B dom +
9 fnfun + Fn On × On Fun +
10 6 9 ax-mp Fun +
11 funimassov Fun + A × B dom + + A × B x t A y B t + y x
12 10 11 mpan A × B dom + + A × B x t A y B t + y x
13 8 12 syl A On B On + A × B x t A y B t + y x
14 oveq1 t = A t + y = A + y
15 14 eleq1d t = A t + y x A + y x
16 15 ralbidv t = A y B t + y x y B A + y x
17 16 ralsng A On t A y B t + y x y B A + y x
18 17 adantr A On B On t A y B t + y x y B A + y x
19 13 18 bitrd A On B On + A × B x y B A + y x
20 onss A On A On
21 snssi B On B On
22 xpss12 A On B On A × B On × On
23 20 21 22 syl2an A On B On A × B On × On
24 23 7 sseqtrrdi A On B On A × B dom +
25 funimassov Fun + A × B dom + + A × B x z A t B z + t x
26 10 25 mpan A × B dom + + A × B x z A t B z + t x
27 24 26 syl A On B On + A × B x z A t B z + t x
28 oveq2 t = B z + t = z + B
29 28 eleq1d t = B z + t x z + B x
30 29 ralsng B On t B z + t x z + B x
31 30 ralbidv B On z A t B z + t x z A z + B x
32 31 adantl A On B On z A t B z + t x z A z + B x
33 27 32 bitrd A On B On + A × B x z A z + B x
34 19 33 anbi12d A On B On + A × B x + A × B x y B A + y x z A z + B x
35 34 rabbidv A On B On x On | + A × B x + A × B x = x On | y B A + y x z A z + B x
36 35 inteqd A On B On x On | + A × B x + A × B x = x On | y B A + y x z A z + B x
37 1 36 eqtrd A On B On A + B = x On | y B A + y x z A z + B x