Metamath Proof Explorer


Theorem naddrid

Description: Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024)

Ref Expression
Assertion naddrid A On A + = A

Proof

Step Hyp Ref Expression
1 oveq1 a = b a + = b +
2 id a = b a = b
3 1 2 eqeq12d a = b a + = a b + = b
4 oveq1 a = A a + = A +
5 id a = A a = A
6 4 5 eqeq12d a = A a + = a A + = A
7 0elon On
8 naddov2 a On On a + = x On | c a + c x b a b + x
9 7 8 mpan2 a On a + = x On | c a + c x b a b + x
10 9 adantr a On b a b + = b a + = x On | c a + c x b a b + x
11 ral0 c a + c x
12 11 biantrur b a b + x c a + c x b a b + x
13 eleq1 b + = b b + x b x
14 13 ralimi b a b + = b b a b + x b x
15 ralbi b a b + x b x b a b + x b a b x
16 14 15 syl b a b + = b b a b + x b a b x
17 16 adantl a On b a b + = b b a b + x b a b x
18 dfss3 a x b a b x
19 17 18 bitr4di a On b a b + = b b a b + x a x
20 12 19 bitr3id a On b a b + = b c a + c x b a b + x a x
21 20 rabbidv a On b a b + = b x On | c a + c x b a b + x = x On | a x
22 21 inteqd a On b a b + = b x On | c a + c x b a b + x = x On | a x
23 intmin a On x On | a x = a
24 23 adantr a On b a b + = b x On | a x = a
25 10 22 24 3eqtrd a On b a b + = b a + = a
26 25 ex a On b a b + = b a + = a
27 3 6 26 tfis3 A On A + = A