Metamath Proof Explorer


Theorem naddssim

Description: Ordinal less-than-or-equal is preserved by natural addition. (Contributed by Scott Fenton, 7-Sep-2024)

Ref Expression
Assertion naddssim A On B On C On A B A + C B + C

Proof

Step Hyp Ref Expression
1 oveq2 c = d A + c = A + d
2 oveq2 c = d B + c = B + d
3 1 2 sseq12d c = d A + c B + c A + d B + d
4 3 imbi2d c = d A B A + c B + c A B A + d B + d
5 4 imbi2d c = d A On B On A B A + c B + c A On B On A B A + d B + d
6 oveq2 c = C A + c = A + C
7 oveq2 c = C B + c = B + C
8 6 7 sseq12d c = C A + c B + c A + C B + C
9 8 imbi2d c = C A B A + c B + c A B A + C B + C
10 9 imbi2d c = C A On B On A B A + c B + c A On B On A B A + C B + C
11 r19.21v d c A On B On A B A + d B + d A On B On d c A B A + d B + d
12 r19.21v d c A B A + d B + d A B d c A + d B + d
13 12 imbi2i A On B On d c A B A + d B + d A On B On A B d c A + d B + d
14 11 13 bitri d c A On B On A B A + d B + d A On B On A B d c A + d B + d
15 oveq2 d = w A + d = A + w
16 oveq2 d = w B + d = B + w
17 15 16 sseq12d d = w A + d B + d A + w B + w
18 17 rspccva d c A + d B + d w c A + w B + w
19 18 ad4ant24 c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c A + w B + w
20 simprrl c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x y c B + y x
21 oveq2 y = w B + y = B + w
22 21 eleq1d y = w B + y x B + w x
23 22 rspccva y c B + y x w c B + w x
24 20 23 sylan c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c B + w x
25 simplrl c On A On B On A B A On
26 25 adantr c On A On B On A B d c A + d B + d A On
27 26 adantr c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x A On
28 27 adantr c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c A On
29 simp-4l c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x c On
30 onelon c On w c w On
31 29 30 sylan c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c w On
32 naddcl A On w On A + w On
33 28 31 32 syl2anc c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c A + w On
34 simplrl c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c x On
35 ontr2 A + w On x On A + w B + w B + w x A + w x
36 33 34 35 syl2anc c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c A + w B + w B + w x A + w x
37 19 24 36 mp2and c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c A + w x
38 37 ralrimiva c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c A + w x
39 simpllr c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x A B
40 simprrr c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x z B z + c x
41 ssralv A B z B z + c x z A z + c x
42 39 40 41 sylc c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x z A z + c x
43 38 42 jca c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c A + w x z A z + c x
44 43 expr c On A On B On A B d c A + d B + d x On y c B + y x z B z + c x w c A + w x z A z + c x
45 44 ss2rabdv c On A On B On A B d c A + d B + d x On | y c B + y x z B z + c x x On | w c A + w x z A z + c x
46 intss x On | y c B + y x z B z + c x x On | w c A + w x z A z + c x x On | w c A + w x z A z + c x x On | y c B + y x z B z + c x
47 45 46 syl c On A On B On A B d c A + d B + d x On | w c A + w x z A z + c x x On | y c B + y x z B z + c x
48 simplll c On A On B On A B d c A + d B + d c On
49 naddov2 A On c On A + c = x On | w c A + w x z A z + c x
50 26 48 49 syl2anc c On A On B On A B d c A + d B + d A + c = x On | w c A + w x z A z + c x
51 simplrr c On A On B On A B B On
52 51 adantr c On A On B On A B d c A + d B + d B On
53 naddov2 B On c On B + c = x On | y c B + y x z B z + c x
54 52 48 53 syl2anc c On A On B On A B d c A + d B + d B + c = x On | y c B + y x z B z + c x
55 47 50 54 3sstr4d c On A On B On A B d c A + d B + d A + c B + c
56 55 exp31 c On A On B On A B d c A + d B + d A + c B + c
57 56 a2d c On A On B On A B d c A + d B + d A B A + c B + c
58 57 ex c On A On B On A B d c A + d B + d A B A + c B + c
59 58 a2d c On A On B On A B d c A + d B + d A On B On A B A + c B + c
60 14 59 biimtrid c On d c A On B On A B A + d B + d A On B On A B A + c B + c
61 5 10 60 tfis3 C On A On B On A B A + C B + C
62 61 com12 A On B On C On A B A + C B + C
63 62 3impia A On B On C On A B A + C B + C