Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
sseq12d |
|
4 |
3
|
imbi2d |
|
5 |
4
|
imbi2d |
|
6 |
|
oveq2 |
|
7 |
|
oveq2 |
|
8 |
6 7
|
sseq12d |
|
9 |
8
|
imbi2d |
|
10 |
9
|
imbi2d |
|
11 |
|
r19.21v |
|
12 |
|
r19.21v |
|
13 |
12
|
imbi2i |
|
14 |
11 13
|
bitri |
|
15 |
|
oveq2 |
|
16 |
|
oveq2 |
|
17 |
15 16
|
sseq12d |
|
18 |
17
|
rspccva |
|
19 |
18
|
ad4ant24 |
|
20 |
|
simprrl |
|
21 |
|
oveq2 |
|
22 |
21
|
eleq1d |
|
23 |
22
|
rspccva |
|
24 |
20 23
|
sylan |
|
25 |
|
simplrl |
|
26 |
25
|
adantr |
|
27 |
26
|
adantr |
|
28 |
27
|
adantr |
|
29 |
|
simp-4l |
|
30 |
|
onelon |
|
31 |
29 30
|
sylan |
|
32 |
|
naddcl |
|
33 |
28 31 32
|
syl2anc |
|
34 |
|
simplrl |
|
35 |
|
ontr2 |
|
36 |
33 34 35
|
syl2anc |
|
37 |
19 24 36
|
mp2and |
|
38 |
37
|
ralrimiva |
|
39 |
|
simpllr |
|
40 |
|
simprrr |
|
41 |
|
ssralv |
|
42 |
39 40 41
|
sylc |
|
43 |
38 42
|
jca |
|
44 |
43
|
expr |
|
45 |
44
|
ss2rabdv |
|
46 |
|
intss |
|
47 |
45 46
|
syl |
|
48 |
|
simplll |
|
49 |
|
naddov2 |
|
50 |
26 48 49
|
syl2anc |
|
51 |
|
simplrr |
|
52 |
51
|
adantr |
|
53 |
|
naddov2 |
|
54 |
52 48 53
|
syl2anc |
|
55 |
47 50 54
|
3sstr4d |
|
56 |
55
|
exp31 |
|
57 |
56
|
a2d |
|
58 |
57
|
ex |
|
59 |
58
|
a2d |
|
60 |
14 59
|
biimtrid |
|
61 |
5 10 60
|
tfis3 |
|
62 |
61
|
com12 |
|
63 |
62
|
3impia |
|