Metamath Proof Explorer


Theorem naddunif

Description: Uniformity theorem for natural addition. If A is the upper bound of X and B is the upper bound of Y , then ( A +no B ) can be expressed in terms of X and Y . (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypotheses naddunif.1 φ A On
naddunif.2 φ B On
naddunif.3 φ A = x On | X x
naddunif.4 φ B = y On | Y y
Assertion naddunif φ A + B = z On | + X × B + A × Y z

Proof

Step Hyp Ref Expression
1 naddunif.1 φ A On
2 naddunif.2 φ B On
3 naddunif.3 φ A = x On | X x
4 naddunif.4 φ B = y On | Y y
5 naddov3 A On B On A + B = w On | + A × B + A × B w
6 1 2 5 syl2anc φ A + B = w On | + A × B + A × B w
7 naddfn + Fn On × On
8 fnfun + Fn On × On Fun +
9 7 8 ax-mp Fun +
10 snex A V
11 xpexg A V B On A × B V
12 10 2 11 sylancr φ A × B V
13 funimaexg Fun + A × B V + A × B V
14 9 12 13 sylancr φ + A × B V
15 imassrn + A × B ran +
16 naddf + : On × On On
17 frn + : On × On On ran + On
18 16 17 ax-mp ran + On
19 15 18 sstri + A × B On
20 19 a1i φ + A × B On
21 14 20 elpwd φ + A × B 𝒫 On
22 snex B V
23 xpexg A On B V A × B V
24 1 22 23 sylancl φ A × B V
25 funimaexg Fun + A × B V + A × B V
26 9 24 25 sylancr φ + A × B V
27 imassrn + A × B ran +
28 27 18 sstri + A × B On
29 28 a1i φ + A × B On
30 26 29 elpwd φ + A × B 𝒫 On
31 pwuncl + A × B 𝒫 On + A × B 𝒫 On + A × B + A × B 𝒫 On
32 21 30 31 syl2anc φ + A × B + A × B 𝒫 On
33 3 1 eqeltrrd φ x On | X x On
34 onintrab2 x On X x x On | X x On
35 33 34 sylibr φ x On X x
36 vex x V
37 36 ssex X x X V
38 37 rexlimivw x On X x X V
39 35 38 syl φ X V
40 xpexg X V B V X × B V
41 39 22 40 sylancl φ X × B V
42 funimaexg Fun + X × B V + X × B V
43 9 41 42 sylancr φ + X × B V
44 imassrn + X × B ran +
45 44 18 sstri + X × B On
46 45 a1i φ + X × B On
47 43 46 elpwd φ + X × B 𝒫 On
48 4 2 eqeltrrd φ y On | Y y On
49 onintrab2 y On Y y y On | Y y On
50 48 49 sylibr φ y On Y y
51 vex y V
52 51 ssex Y y Y V
53 52 rexlimivw y On Y y Y V
54 50 53 syl φ Y V
55 xpexg A V Y V A × Y V
56 10 54 55 sylancr φ A × Y V
57 funimaexg Fun + A × Y V + A × Y V
58 9 56 57 sylancr φ + A × Y V
59 imassrn + A × Y ran +
60 59 18 sstri + A × Y On
61 60 a1i φ + A × Y On
62 58 61 elpwd φ + A × Y 𝒫 On
63 pwuncl + X × B 𝒫 On + A × Y 𝒫 On + X × B + A × Y 𝒫 On
64 47 62 63 syl2anc φ + X × B + A × Y 𝒫 On
65 2 4 cofonr φ q B s Y q s
66 onss B On B On
67 2 66 syl φ B On
68 67 sselda φ q B q On
69 68 adantr φ q B s Y q On
70 onss y On y On
71 70 adantl φ y On y On
72 sstr Y y y On Y On
73 72 expcom y On Y y Y On
74 71 73 syl φ y On Y y Y On
75 74 rexlimdva φ y On Y y Y On
76 50 75 mpd φ Y On
77 76 adantr φ q B Y On
78 77 sselda φ q B s Y s On
79 1 ad2antrr φ q B s Y A On
80 naddss2 q On s On A On q s A + q A + s
81 69 78 79 80 syl3anc φ q B s Y q s A + q A + s
82 81 rexbidva φ q B s Y q s s Y A + q A + s
83 82 ralbidva φ q B s Y q s q B s Y A + q A + s
84 65 83 mpbid φ q B s Y A + q A + s
85 1 snssd φ A On
86 xpss12 A On Y On A × Y On × On
87 85 76 86 syl2anc φ A × Y On × On
88 sseq2 d = r + s A + q d A + q r + s
89 88 imaeqexov + Fn On × On A × Y On × On d + A × Y A + q d r A s Y A + q r + s
90 7 87 89 sylancr φ d + A × Y A + q d r A s Y A + q r + s
91 oveq1 r = A r + s = A + s
92 91 sseq2d r = A A + q r + s A + q A + s
93 92 rexbidv r = A s Y A + q r + s s Y A + q A + s
94 93 rexsng A On r A s Y A + q r + s s Y A + q A + s
95 1 94 syl φ r A s Y A + q r + s s Y A + q A + s
96 90 95 bitrd φ d + A × Y A + q d s Y A + q A + s
97 96 ralbidv φ q B d + A × Y A + q d q B s Y A + q A + s
98 84 97 mpbird φ q B d + A × Y A + q d
99 olc d + A × Y A + q d d + X × B A + q d d + A × Y A + q d
100 99 ralimi q B d + A × Y A + q d q B d + X × B A + q d d + A × Y A + q d
101 98 100 syl φ q B d + X × B A + q d d + A × Y A + q d
102 rexun d + X × B + A × Y A + q d d + X × B A + q d d + A × Y A + q d
103 102 ralbii q B d + X × B + A × Y A + q d q B d + X × B A + q d d + A × Y A + q d
104 101 103 sylibr φ q B d + X × B + A × Y A + q d
105 xpss12 A On B On A × B On × On
106 85 67 105 syl2anc φ A × B On × On
107 sseq1 c = p + q c d p + q d
108 107 rexbidv c = p + q d + X × B + A × Y c d d + X × B + A × Y p + q d
109 108 imaeqalov + Fn On × On A × B On × On c + A × B d + X × B + A × Y c d p A q B d + X × B + A × Y p + q d
110 7 106 109 sylancr φ c + A × B d + X × B + A × Y c d p A q B d + X × B + A × Y p + q d
111 oveq1 p = A p + q = A + q
112 111 sseq1d p = A p + q d A + q d
113 112 rexbidv p = A d + X × B + A × Y p + q d d + X × B + A × Y A + q d
114 113 ralbidv p = A q B d + X × B + A × Y p + q d q B d + X × B + A × Y A + q d
115 114 ralsng A On p A q B d + X × B + A × Y p + q d q B d + X × B + A × Y A + q d
116 1 115 syl φ p A q B d + X × B + A × Y p + q d q B d + X × B + A × Y A + q d
117 110 116 bitrd φ c + A × B d + X × B + A × Y c d q B d + X × B + A × Y A + q d
118 104 117 mpbird φ c + A × B d + X × B + A × Y c d
119 1 3 cofonr φ p A r X p r
120 onss A On A On
121 1 120 syl φ A On
122 121 sselda φ p A p On
123 122 adantr φ p A r X p On
124 ssintub X x On | X x
125 3 121 eqsstrrd φ x On | X x On
126 124 125 sstrid φ X On
127 126 adantr φ p A X On
128 127 sselda φ p A r X r On
129 2 ad2antrr φ p A r X B On
130 naddss1 p On r On B On p r p + B r + B
131 123 128 129 130 syl3anc φ p A r X p r p + B r + B
132 131 rexbidva φ p A r X p r r X p + B r + B
133 132 ralbidva φ p A r X p r p A r X p + B r + B
134 119 133 mpbid φ p A r X p + B r + B
135 2 snssd φ B On
136 xpss12 X On B On X × B On × On
137 126 135 136 syl2anc φ X × B On × On
138 sseq2 d = r + s p + B d p + B r + s
139 138 imaeqexov + Fn On × On X × B On × On d + X × B p + B d r X s B p + B r + s
140 7 137 139 sylancr φ d + X × B p + B d r X s B p + B r + s
141 oveq2 s = B r + s = r + B
142 141 sseq2d s = B p + B r + s p + B r + B
143 142 rexsng B On s B p + B r + s p + B r + B
144 2 143 syl φ s B p + B r + s p + B r + B
145 144 rexbidv φ r X s B p + B r + s r X p + B r + B
146 140 145 bitrd φ d + X × B p + B d r X p + B r + B
147 146 ralbidv φ p A d + X × B p + B d p A r X p + B r + B
148 134 147 mpbird φ p A d + X × B p + B d
149 orc d + X × B p + B d d + X × B p + B d d + A × Y p + B d
150 149 ralimi p A d + X × B p + B d p A d + X × B p + B d d + A × Y p + B d
151 148 150 syl φ p A d + X × B p + B d d + A × Y p + B d
152 rexun d + X × B + A × Y p + B d d + X × B p + B d d + A × Y p + B d
153 152 ralbii p A d + X × B + A × Y p + B d p A d + X × B p + B d d + A × Y p + B d
154 151 153 sylibr φ p A d + X × B + A × Y p + B d
155 oveq2 q = B p + q = p + B
156 155 sseq1d q = B p + q d p + B d
157 156 rexbidv q = B d + X × B + A × Y p + q d d + X × B + A × Y p + B d
158 157 ralsng B On q B d + X × B + A × Y p + q d d + X × B + A × Y p + B d
159 2 158 syl φ q B d + X × B + A × Y p + q d d + X × B + A × Y p + B d
160 159 ralbidv φ p A q B d + X × B + A × Y p + q d p A d + X × B + A × Y p + B d
161 154 160 mpbird φ p A q B d + X × B + A × Y p + q d
162 xpss12 A On B On A × B On × On
163 121 135 162 syl2anc φ A × B On × On
164 108 imaeqalov + Fn On × On A × B On × On c + A × B d + X × B + A × Y c d p A q B d + X × B + A × Y p + q d
165 7 163 164 sylancr φ c + A × B d + X × B + A × Y c d p A q B d + X × B + A × Y p + q d
166 161 165 mpbird φ c + A × B d + X × B + A × Y c d
167 ralunb c + A × B + A × B d + X × B + A × Y c d c + A × B d + X × B + A × Y c d c + A × B d + X × B + A × Y c d
168 118 166 167 sylanbrc φ c + A × B + A × B d + X × B + A × Y c d
169 124 3 sseqtrrid φ X A
170 169 sselda φ p X p A
171 ssid p p
172 sseq2 r = p p r p p
173 172 rspcev p A p p r A p r
174 170 171 173 sylancl φ p X r A p r
175 174 ralrimiva φ p X r A p r
176 126 sselda φ p X p On
177 176 adantr φ p X r A p On
178 121 adantr φ p X A On
179 178 sselda φ p X r A r On
180 2 ad2antrr φ p X r A B On
181 177 179 180 130 syl3anc φ p X r A p r p + B r + B
182 181 rexbidva φ p X r A p r r A p + B r + B
183 182 ralbidva φ p X r A p r p X r A p + B r + B
184 175 183 mpbid φ p X r A p + B r + B
185 sseq2 b = r + s p + B b p + B r + s
186 185 imaeqexov + Fn On × On A × B On × On b + A × B p + B b r A s B p + B r + s
187 7 163 186 sylancr φ b + A × B p + B b r A s B p + B r + s
188 144 rexbidv φ r A s B p + B r + s r A p + B r + B
189 187 188 bitrd φ b + A × B p + B b r A p + B r + B
190 189 ralbidv φ p X b + A × B p + B b p X r A p + B r + B
191 184 190 mpbird φ p X b + A × B p + B b
192 olc b + A × B p + B b b + A × B p + B b b + A × B p + B b
193 192 ralimi p X b + A × B p + B b p X b + A × B p + B b b + A × B p + B b
194 191 193 syl φ p X b + A × B p + B b b + A × B p + B b
195 155 sseq1d q = B p + q b p + B b
196 195 rexbidv q = B b + A × B + A × B p + q b b + A × B + A × B p + B b
197 196 ralsng B On q B b + A × B + A × B p + q b b + A × B + A × B p + B b
198 2 197 syl φ q B b + A × B + A × B p + q b b + A × B + A × B p + B b
199 198 adantr φ p X q B b + A × B + A × B p + q b b + A × B + A × B p + B b
200 rexun b + A × B + A × B p + B b b + A × B p + B b b + A × B p + B b
201 199 200 bitrdi φ p X q B b + A × B + A × B p + q b b + A × B p + B b b + A × B p + B b
202 201 ralbidva φ p X q B b + A × B + A × B p + q b p X b + A × B p + B b b + A × B p + B b
203 194 202 mpbird φ p X q B b + A × B + A × B p + q b
204 sseq1 a = p + q a b p + q b
205 204 rexbidv a = p + q b + A × B + A × B a b b + A × B + A × B p + q b
206 205 imaeqalov + Fn On × On X × B On × On a + X × B b + A × B + A × B a b p X q B b + A × B + A × B p + q b
207 7 137 206 sylancr φ a + X × B b + A × B + A × B a b p X q B b + A × B + A × B p + q b
208 203 207 mpbird φ a + X × B b + A × B + A × B a b
209 ssintub Y y On | Y y
210 209 4 sseqtrrid φ Y B
211 210 sselda φ q Y q B
212 ssid q q
213 sseq2 s = q q s q q
214 213 rspcev q B q q s B q s
215 211 212 214 sylancl φ q Y s B q s
216 215 ralrimiva φ q Y s B q s
217 92 rexbidv r = A s B A + q r + s s B A + q A + s
218 217 rexsng A On r A s B A + q r + s s B A + q A + s
219 1 218 syl φ r A s B A + q r + s s B A + q A + s
220 219 adantr φ q Y r A s B A + q r + s s B A + q A + s
221 sseq2 b = r + s A + q b A + q r + s
222 221 imaeqexov + Fn On × On A × B On × On b + A × B A + q b r A s B A + q r + s
223 7 106 222 sylancr φ b + A × B A + q b r A s B A + q r + s
224 223 adantr φ q Y b + A × B A + q b r A s B A + q r + s
225 76 sselda φ q Y q On
226 225 adantr φ q Y s B q On
227 67 adantr φ q Y B On
228 227 sselda φ q Y s B s On
229 1 ad2antrr φ q Y s B A On
230 226 228 229 80 syl3anc φ q Y s B q s A + q A + s
231 230 rexbidva φ q Y s B q s s B A + q A + s
232 220 224 231 3bitr4d φ q Y b + A × B A + q b s B q s
233 232 ralbidva φ q Y b + A × B A + q b q Y s B q s
234 216 233 mpbird φ q Y b + A × B A + q b
235 orc b + A × B A + q b b + A × B A + q b b + A × B A + q b
236 235 ralimi q Y b + A × B A + q b q Y b + A × B A + q b b + A × B A + q b
237 234 236 syl φ q Y b + A × B A + q b b + A × B A + q b
238 rexun b + A × B + A × B A + q b b + A × B A + q b b + A × B A + q b
239 238 ralbii q Y b + A × B + A × B A + q b q Y b + A × B A + q b b + A × B A + q b
240 237 239 sylibr φ q Y b + A × B + A × B A + q b
241 111 sseq1d p = A p + q b A + q b
242 241 rexbidv p = A b + A × B + A × B p + q b b + A × B + A × B A + q b
243 242 ralbidv p = A q Y b + A × B + A × B p + q b q Y b + A × B + A × B A + q b
244 243 ralsng A On p A q Y b + A × B + A × B p + q b q Y b + A × B + A × B A + q b
245 1 244 syl φ p A q Y b + A × B + A × B p + q b q Y b + A × B + A × B A + q b
246 240 245 mpbird φ p A q Y b + A × B + A × B p + q b
247 205 imaeqalov + Fn On × On A × Y On × On a + A × Y b + A × B + A × B a b p A q Y b + A × B + A × B p + q b
248 7 87 247 sylancr φ a + A × Y b + A × B + A × B a b p A q Y b + A × B + A × B p + q b
249 246 248 mpbird φ a + A × Y b + A × B + A × B a b
250 ralunb a + X × B + A × Y b + A × B + A × B a b a + X × B b + A × B + A × B a b a + A × Y b + A × B + A × B a b
251 208 249 250 sylanbrc φ a + X × B + A × Y b + A × B + A × B a b
252 32 64 168 251 cofon2 φ w On | + A × B + A × B w = z On | + X × B + A × Y z
253 6 252 eqtrd φ A + B = z On | + X × B + A × Y z