Metamath Proof Explorer


Theorem naddword1

Description: Weak-ordering principle for natural addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion naddword1 Could not format assertion : No typesetting found for |- ( ( A e. On /\ B e. On ) -> A C_ ( A +no B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 naddrid Could not format ( A e. On -> ( A +no (/) ) = A ) : No typesetting found for |- ( A e. On -> ( A +no (/) ) = A ) with typecode |-
2 1 adantr Could not format ( ( A e. On /\ B e. On ) -> ( A +no (/) ) = A ) : No typesetting found for |- ( ( A e. On /\ B e. On ) -> ( A +no (/) ) = A ) with typecode |-
3 0ss B
4 0elon On
5 naddss2 Could not format ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) ) : No typesetting found for |- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) ) with typecode |-
6 4 5 mp3an1 Could not format ( ( B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) ) : No typesetting found for |- ( ( B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) ) with typecode |-
7 6 ancoms Could not format ( ( A e. On /\ B e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) ) : No typesetting found for |- ( ( A e. On /\ B e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) ) with typecode |-
8 3 7 mpbii Could not format ( ( A e. On /\ B e. On ) -> ( A +no (/) ) C_ ( A +no B ) ) : No typesetting found for |- ( ( A e. On /\ B e. On ) -> ( A +no (/) ) C_ ( A +no B ) ) with typecode |-
9 2 8 eqsstrrd Could not format ( ( A e. On /\ B e. On ) -> A C_ ( A +no B ) ) : No typesetting found for |- ( ( A e. On /\ B e. On ) -> A C_ ( A +no B ) ) with typecode |-