Metamath Proof Explorer


Theorem naecoms-o

Description: A commutation rule for distinct variable specifiers. Version of naecoms using ax-c11 . (Contributed by NM, 2-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nalequcoms-o.1 ¬ x x = y φ
Assertion naecoms-o ¬ y y = x φ

Proof

Step Hyp Ref Expression
1 nalequcoms-o.1 ¬ x x = y φ
2 aecom-o x x = y y y = x
3 2 1 nsyl4 ¬ φ y y = x
4 3 con1i ¬ y y = x φ