Metamath Proof Explorer


Theorem naim2

Description: Constructor theorem for -/\ . (Contributed by Anthony Hart, 1-Sep-2011)

Ref Expression
Assertion naim2 φ ψ χ ψ χ φ

Proof

Step Hyp Ref Expression
1 con3 φ ψ ¬ ψ ¬ φ
2 1 orim2d φ ψ ¬ χ ¬ ψ ¬ χ ¬ φ
3 pm3.13 ¬ χ ψ ¬ χ ¬ ψ
4 pm3.14 ¬ χ ¬ φ ¬ χ φ
5 3 4 imim12i ¬ χ ¬ ψ ¬ χ ¬ φ ¬ χ ψ ¬ χ φ
6 df-nan χ ψ ¬ χ ψ
7 df-nan χ φ ¬ χ φ
8 5 6 7 3imtr4g ¬ χ ¬ ψ ¬ χ ¬ φ χ ψ χ φ
9 2 8 syl φ ψ χ ψ χ φ