Metamath Proof Explorer


Theorem nan

Description: Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003)

Ref Expression
Assertion nan φ ¬ ψ χ φ ψ ¬ χ

Proof

Step Hyp Ref Expression
1 impexp φ ψ ¬ χ φ ψ ¬ χ
2 imnan ψ ¬ χ ¬ ψ χ
3 2 imbi2i φ ψ ¬ χ φ ¬ ψ χ
4 1 3 bitr2i φ ¬ ψ χ φ ψ ¬ χ