Metamath Proof Explorer


Theorem nannot

Description: Negation in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007) (Revised by Wolf Lammen, 26-Jun-2020)

Ref Expression
Assertion nannot ¬ φ φ φ

Proof

Step Hyp Ref Expression
1 dfnan2 φ φ φ ¬ φ
2 pm4.8 φ ¬ φ ¬ φ
3 1 2 bitr2i ¬ φ φ φ