Metamath Proof Explorer


Theorem nat1st2nd

Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natrcl.1 N = C Nat D
nat1st2nd.2 φ A F N G
Assertion nat1st2nd φ A 1 st F 2 nd F N 1 st G 2 nd G

Proof

Step Hyp Ref Expression
1 natrcl.1 N = C Nat D
2 nat1st2nd.2 φ A F N G
3 relfunc Rel C Func D
4 1 natrcl A F N G F C Func D G C Func D
5 2 4 syl φ F C Func D G C Func D
6 5 simpld φ F C Func D
7 1st2nd Rel C Func D F C Func D F = 1 st F 2 nd F
8 3 6 7 sylancr φ F = 1 st F 2 nd F
9 5 simprd φ G C Func D
10 1st2nd Rel C Func D G C Func D G = 1 st G 2 nd G
11 3 9 10 sylancr φ G = 1 st G 2 nd G
12 8 11 oveq12d φ F N G = 1 st F 2 nd F N 1 st G 2 nd G
13 2 12 eleqtrd φ A 1 st F 2 nd F N 1 st G 2 nd G