Metamath Proof Explorer


Theorem natcl

Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natrcl.1 N = C Nat D
natixp.2 φ A F G N K L
natixp.b B = Base C
natixp.j J = Hom D
natcl.1 φ X B
Assertion natcl φ A X F X J K X

Proof

Step Hyp Ref Expression
1 natrcl.1 N = C Nat D
2 natixp.2 φ A F G N K L
3 natixp.b B = Base C
4 natixp.j J = Hom D
5 natcl.1 φ X B
6 1 2 3 4 natixp φ A x B F x J K x
7 fveq2 x = X F x = F X
8 fveq2 x = X K x = K X
9 7 8 oveq12d x = X F x J K x = F X J K X
10 9 fvixp A x B F x J K x X B A X F X J K X
11 6 5 10 syl2anc φ A X F X J K X