Metamath Proof Explorer


Theorem natffn

Description: The natural transformation set operation is a well-defined function. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypothesis natrcl.1 N = C Nat D
Assertion natffn N Fn C Func D × C Func D

Proof

Step Hyp Ref Expression
1 natrcl.1 N = C Nat D
2 eqid Base C = Base C
3 eqid Hom C = Hom C
4 eqid Hom D = Hom D
5 eqid comp D = comp D
6 1 2 3 4 5 natfval N = f C Func D , g C Func D 1 st f / r 1 st g / s a x Base C r x Hom D s x | x Base C y Base C h x Hom C y a y r x r y comp D s y x 2 nd f y h = x 2 nd g y h r x s x comp D s y a x
7 ovex r x Hom D s x V
8 7 rgenw x Base C r x Hom D s x V
9 ixpexg x Base C r x Hom D s x V x Base C r x Hom D s x V
10 8 9 ax-mp x Base C r x Hom D s x V
11 10 rabex a x Base C r x Hom D s x | x Base C y Base C h x Hom C y a y r x r y comp D s y x 2 nd f y h = x 2 nd g y h r x s x comp D s y a x V
12 11 csbex 1 st g / s a x Base C r x Hom D s x | x Base C y Base C h x Hom C y a y r x r y comp D s y x 2 nd f y h = x 2 nd g y h r x s x comp D s y a x V
13 12 csbex 1 st f / r 1 st g / s a x Base C r x Hom D s x | x Base C y Base C h x Hom C y a y r x r y comp D s y x 2 nd f y h = x 2 nd g y h r x s x comp D s y a x V
14 6 13 fnmpoi N Fn C Func D × C Func D