| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natfval.1 |  | 
						
							| 2 |  | natfval.b |  | 
						
							| 3 |  | natfval.h |  | 
						
							| 4 |  | natfval.j |  | 
						
							| 5 |  | natfval.o |  | 
						
							| 6 |  | oveq12 |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 | 7 | fveq2d |  | 
						
							| 9 | 8 2 | eqtr4di |  | 
						
							| 10 | 9 | ixpeq1d |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 11 | fveq2d |  | 
						
							| 13 | 12 4 | eqtr4di |  | 
						
							| 14 | 13 | oveqd |  | 
						
							| 15 | 14 | ixpeq2dv |  | 
						
							| 16 | 10 15 | eqtrd |  | 
						
							| 17 | 7 | fveq2d |  | 
						
							| 18 | 17 3 | eqtr4di |  | 
						
							| 19 | 18 | oveqd |  | 
						
							| 20 | 11 | fveq2d |  | 
						
							| 21 | 20 5 | eqtr4di |  | 
						
							| 22 | 21 | oveqd |  | 
						
							| 23 | 22 | oveqd |  | 
						
							| 24 | 21 | oveqd |  | 
						
							| 25 | 24 | oveqd |  | 
						
							| 26 | 23 25 | eqeq12d |  | 
						
							| 27 | 19 26 | raleqbidv |  | 
						
							| 28 | 9 27 | raleqbidv |  | 
						
							| 29 | 9 28 | raleqbidv |  | 
						
							| 30 | 16 29 | rabeqbidv |  | 
						
							| 31 | 30 | csbeq2dv |  | 
						
							| 32 | 31 | csbeq2dv |  | 
						
							| 33 | 6 6 32 | mpoeq123dv |  | 
						
							| 34 |  | df-nat |  | 
						
							| 35 |  | ovex |  | 
						
							| 36 | 35 35 | mpoex |  | 
						
							| 37 | 33 34 36 | ovmpoa |  | 
						
							| 38 | 34 | mpondm0 |  | 
						
							| 39 |  | funcrcl |  | 
						
							| 40 | 39 | con3i |  | 
						
							| 41 | 40 | eq0rdv |  | 
						
							| 42 | 41 | olcd |  | 
						
							| 43 |  | 0mpo0 |  | 
						
							| 44 | 42 43 | syl |  | 
						
							| 45 | 38 44 | eqtr4d |  | 
						
							| 46 | 37 45 | pm2.61i |  | 
						
							| 47 | 1 46 | eqtri |  |