Step |
Hyp |
Ref |
Expression |
1 |
|
natfval.1 |
|
2 |
|
natfval.b |
|
3 |
|
natfval.h |
|
4 |
|
natfval.j |
|
5 |
|
natfval.o |
|
6 |
|
oveq12 |
|
7 |
|
simpl |
|
8 |
7
|
fveq2d |
|
9 |
8 2
|
eqtr4di |
|
10 |
9
|
ixpeq1d |
|
11 |
|
simpr |
|
12 |
11
|
fveq2d |
|
13 |
12 4
|
eqtr4di |
|
14 |
13
|
oveqd |
|
15 |
14
|
ixpeq2dv |
|
16 |
10 15
|
eqtrd |
|
17 |
7
|
fveq2d |
|
18 |
17 3
|
eqtr4di |
|
19 |
18
|
oveqd |
|
20 |
11
|
fveq2d |
|
21 |
20 5
|
eqtr4di |
|
22 |
21
|
oveqd |
|
23 |
22
|
oveqd |
|
24 |
21
|
oveqd |
|
25 |
24
|
oveqd |
|
26 |
23 25
|
eqeq12d |
|
27 |
19 26
|
raleqbidv |
|
28 |
9 27
|
raleqbidv |
|
29 |
9 28
|
raleqbidv |
|
30 |
16 29
|
rabeqbidv |
|
31 |
30
|
csbeq2dv |
|
32 |
31
|
csbeq2dv |
|
33 |
6 6 32
|
mpoeq123dv |
|
34 |
|
df-nat |
|
35 |
|
ovex |
|
36 |
35 35
|
mpoex |
|
37 |
33 34 36
|
ovmpoa |
|
38 |
34
|
mpondm0 |
|
39 |
|
funcrcl |
|
40 |
39
|
con3i |
|
41 |
40
|
eq0rdv |
|
42 |
41
|
olcd |
|
43 |
|
0mpo0 |
|
44 |
42 43
|
syl |
|
45 |
38 44
|
eqtr4d |
|
46 |
37 45
|
pm2.61i |
|
47 |
1 46
|
eqtri |
|