Step |
Hyp |
Ref |
Expression |
1 |
|
natrcl.1 |
|
2 |
|
natixp.2 |
|
3 |
|
natixp.b |
|
4 |
|
nati.h |
|
5 |
|
nati.o |
|
6 |
|
nati.x |
|
7 |
|
nati.y |
|
8 |
|
nati.r |
|
9 |
|
eqid |
|
10 |
1
|
natrcl |
|
11 |
2 10
|
syl |
|
12 |
11
|
simpld |
|
13 |
|
df-br |
|
14 |
12 13
|
sylibr |
|
15 |
11
|
simprd |
|
16 |
|
df-br |
|
17 |
15 16
|
sylibr |
|
18 |
1 3 4 9 5 14 17
|
isnat |
|
19 |
2 18
|
mpbid |
|
20 |
19
|
simprd |
|
21 |
7
|
adantr |
|
22 |
8
|
ad2antrr |
|
23 |
|
simplr |
|
24 |
|
simpr |
|
25 |
23 24
|
oveq12d |
|
26 |
22 25
|
eleqtrrd |
|
27 |
|
simpllr |
|
28 |
27
|
fveq2d |
|
29 |
|
simplr |
|
30 |
29
|
fveq2d |
|
31 |
28 30
|
opeq12d |
|
32 |
29
|
fveq2d |
|
33 |
31 32
|
oveq12d |
|
34 |
29
|
fveq2d |
|
35 |
27 29
|
oveq12d |
|
36 |
|
simpr |
|
37 |
35 36
|
fveq12d |
|
38 |
33 34 37
|
oveq123d |
|
39 |
27
|
fveq2d |
|
40 |
28 39
|
opeq12d |
|
41 |
40 32
|
oveq12d |
|
42 |
27 29
|
oveq12d |
|
43 |
42 36
|
fveq12d |
|
44 |
27
|
fveq2d |
|
45 |
41 43 44
|
oveq123d |
|
46 |
38 45
|
eqeq12d |
|
47 |
26 46
|
rspcdv |
|
48 |
21 47
|
rspcimdv |
|
49 |
6 48
|
rspcimdv |
|
50 |
20 49
|
mpd |
|