Metamath Proof Explorer


Theorem natrcl

Description: Reverse closure for a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypothesis natrcl.1 N = C Nat D
Assertion natrcl A F N G F C Func D G C Func D

Proof

Step Hyp Ref Expression
1 natrcl.1 N = C Nat D
2 eqid Base C = Base C
3 eqid Hom C = Hom C
4 eqid Hom D = Hom D
5 eqid comp D = comp D
6 1 2 3 4 5 natfval N = f C Func D , g C Func D 1 st f / r 1 st g / s a x Base C r x Hom D s x | x Base C y Base C h x Hom C y a y r x r y comp D s y x 2 nd f y h = x 2 nd g y h r x s x comp D s y a x
7 6 elmpocl A F N G F C Func D G C Func D