Metamath Proof Explorer


Theorem nb3grpr

Description: The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017) (Revised by AV, 28-Oct-2020)

Ref Expression
Hypotheses nb3grpr.v V = Vtx G
nb3grpr.e E = Edg G
nb3grpr.g φ G USGraph
nb3grpr.t φ V = A B C
nb3grpr.s φ A X B Y C Z
nb3grpr.n φ A B A C B C
Assertion nb3grpr φ A B E B C E C A E x V y V z V y G NeighbVtx x = y z

Proof

Step Hyp Ref Expression
1 nb3grpr.v V = Vtx G
2 nb3grpr.e E = Edg G
3 nb3grpr.g φ G USGraph
4 nb3grpr.t φ V = A B C
5 nb3grpr.s φ A X B Y C Z
6 nb3grpr.n φ A B A C B C
7 id A B E B C E C A E A B E B C E C A E
8 prcom A B = B A
9 8 eleq1i A B E B A E
10 prcom B C = C B
11 10 eleq1i B C E C B E
12 prcom C A = A C
13 12 eleq1i C A E A C E
14 9 11 13 3anbi123i A B E B C E C A E B A E C B E A C E
15 3anrot A C E B A E C B E B A E C B E A C E
16 14 15 bitr4i A B E B C E C A E A C E B A E C B E
17 16 a1i A B E B C E C A E A B E B C E C A E A C E B A E C B E
18 7 17 biadanii A B E B C E C A E A B E B C E C A E A C E B A E C B E
19 an6 A B E B C E C A E A C E B A E C B E A B E A C E B C E B A E C A E C B E
20 18 19 bitri A B E B C E C A E A B E A C E B C E B A E C A E C B E
21 20 a1i φ A B E B C E C A E A B E A C E B C E B A E C A E C B E
22 1 2 3 4 5 nb3grprlem1 φ G NeighbVtx A = B C A B E A C E
23 tprot A B C = B C A
24 4 23 eqtrdi φ V = B C A
25 3anrot A X B Y C Z B Y C Z A X
26 5 25 sylib φ B Y C Z A X
27 1 2 3 24 26 nb3grprlem1 φ G NeighbVtx B = C A B C E B A E
28 tprot C A B = A B C
29 4 28 eqtr4di φ V = C A B
30 3anrot C Z A X B Y A X B Y C Z
31 5 30 sylibr φ C Z A X B Y
32 1 2 3 29 31 nb3grprlem1 φ G NeighbVtx C = A B C A E C B E
33 22 27 32 3anbi123d φ G NeighbVtx A = B C G NeighbVtx B = C A G NeighbVtx C = A B A B E A C E B C E B A E C A E C B E
34 1 2 3 4 5 6 nb3grprlem2 φ G NeighbVtx A = B C y V z V y G NeighbVtx A = y z
35 necom A B B A
36 necom A C C A
37 biid B C B C
38 35 36 37 3anbi123i A B A C B C B A C A B C
39 3anrot B C B A C A B A C A B C
40 38 39 bitr4i A B A C B C B C B A C A
41 6 40 sylib φ B C B A C A
42 1 2 3 24 26 41 nb3grprlem2 φ G NeighbVtx B = C A y V z V y G NeighbVtx B = y z
43 3anrot A B A C B C A C B C A B
44 necom B C C B
45 biid A B A B
46 36 44 45 3anbi123i A C B C A B C A C B A B
47 43 46 bitri A B A C B C C A C B A B
48 6 47 sylib φ C A C B A B
49 1 2 3 29 31 48 nb3grprlem2 φ G NeighbVtx C = A B y V z V y G NeighbVtx C = y z
50 34 42 49 3anbi123d φ G NeighbVtx A = B C G NeighbVtx B = C A G NeighbVtx C = A B y V z V y G NeighbVtx A = y z y V z V y G NeighbVtx B = y z y V z V y G NeighbVtx C = y z
51 21 33 50 3bitr2d φ A B E B C E C A E y V z V y G NeighbVtx A = y z y V z V y G NeighbVtx B = y z y V z V y G NeighbVtx C = y z
52 oveq2 x = A G NeighbVtx x = G NeighbVtx A
53 52 eqeq1d x = A G NeighbVtx x = y z G NeighbVtx A = y z
54 53 2rexbidv x = A y V z V y G NeighbVtx x = y z y V z V y G NeighbVtx A = y z
55 oveq2 x = B G NeighbVtx x = G NeighbVtx B
56 55 eqeq1d x = B G NeighbVtx x = y z G NeighbVtx B = y z
57 56 2rexbidv x = B y V z V y G NeighbVtx x = y z y V z V y G NeighbVtx B = y z
58 oveq2 x = C G NeighbVtx x = G NeighbVtx C
59 58 eqeq1d x = C G NeighbVtx x = y z G NeighbVtx C = y z
60 59 2rexbidv x = C y V z V y G NeighbVtx x = y z y V z V y G NeighbVtx C = y z
61 54 57 60 raltpg A X B Y C Z x A B C y V z V y G NeighbVtx x = y z y V z V y G NeighbVtx A = y z y V z V y G NeighbVtx B = y z y V z V y G NeighbVtx C = y z
62 5 61 syl φ x A B C y V z V y G NeighbVtx x = y z y V z V y G NeighbVtx A = y z y V z V y G NeighbVtx B = y z y V z V y G NeighbVtx C = y z
63 raleq V = A B C x V y V z V y G NeighbVtx x = y z x A B C y V z V y G NeighbVtx x = y z
64 63 bicomd V = A B C x A B C y V z V y G NeighbVtx x = y z x V y V z V y G NeighbVtx x = y z
65 4 64 syl φ x A B C y V z V y G NeighbVtx x = y z x V y V z V y G NeighbVtx x = y z
66 51 62 65 3bitr2d φ A B E B C E C A E x V y V z V y G NeighbVtx x = y z