Metamath Proof Explorer


Theorem nb3grprlem1

Description: Lemma 1 for nb3grpr . (Contributed by Alexander van der Vekens, 15-Oct-2017) (Revised by AV, 28-Oct-2020)

Ref Expression
Hypotheses nb3grpr.v V = Vtx G
nb3grpr.e E = Edg G
nb3grpr.g φ G USGraph
nb3grpr.t φ V = A B C
nb3grpr.s φ A X B Y C Z
Assertion nb3grprlem1 φ G NeighbVtx A = B C A B E A C E

Proof

Step Hyp Ref Expression
1 nb3grpr.v V = Vtx G
2 nb3grpr.e E = Edg G
3 nb3grpr.g φ G USGraph
4 nb3grpr.t φ V = A B C
5 nb3grpr.s φ A X B Y C Z
6 prid1g B Y B B C
7 6 3ad2ant2 A X B Y C Z B B C
8 5 7 syl φ B B C
9 8 adantr φ G NeighbVtx A = B C B B C
10 eleq2 B C = G NeighbVtx A B B C B G NeighbVtx A
11 10 eqcoms G NeighbVtx A = B C B B C B G NeighbVtx A
12 11 adantl φ G NeighbVtx A = B C B B C B G NeighbVtx A
13 9 12 mpbid φ G NeighbVtx A = B C B G NeighbVtx A
14 2 nbusgreledg G USGraph B G NeighbVtx A B A E
15 prcom B A = A B
16 15 a1i G USGraph B A = A B
17 16 eleq1d G USGraph B A E A B E
18 14 17 bitrd G USGraph B G NeighbVtx A A B E
19 3 18 syl φ B G NeighbVtx A A B E
20 19 adantr φ G NeighbVtx A = B C B G NeighbVtx A A B E
21 13 20 mpbid φ G NeighbVtx A = B C A B E
22 prid2g C Z C B C
23 22 3ad2ant3 A X B Y C Z C B C
24 5 23 syl φ C B C
25 24 adantr φ G NeighbVtx A = B C C B C
26 eleq2 B C = G NeighbVtx A C B C C G NeighbVtx A
27 26 eqcoms G NeighbVtx A = B C C B C C G NeighbVtx A
28 27 adantl φ G NeighbVtx A = B C C B C C G NeighbVtx A
29 25 28 mpbid φ G NeighbVtx A = B C C G NeighbVtx A
30 2 nbusgreledg G USGraph C G NeighbVtx A C A E
31 prcom C A = A C
32 31 a1i G USGraph C A = A C
33 32 eleq1d G USGraph C A E A C E
34 30 33 bitrd G USGraph C G NeighbVtx A A C E
35 3 34 syl φ C G NeighbVtx A A C E
36 35 adantr φ G NeighbVtx A = B C C G NeighbVtx A A C E
37 29 36 mpbid φ G NeighbVtx A = B C A C E
38 21 37 jca φ G NeighbVtx A = B C A B E A C E
39 1 2 nbusgr G USGraph G NeighbVtx A = v V | A v E
40 3 39 syl φ G NeighbVtx A = v V | A v E
41 40 adantr φ A B E A C E G NeighbVtx A = v V | A v E
42 eleq2 V = A B C v V v A B C
43 4 42 syl φ v V v A B C
44 43 adantr φ A B E A C E v V v A B C
45 vex v V
46 45 eltp v A B C v = A v = B v = C
47 2 usgredgne G USGraph A v E A v
48 df-ne A v ¬ A = v
49 pm2.24 A = v ¬ A = v v = B v = C
50 49 eqcoms v = A ¬ A = v v = B v = C
51 50 com12 ¬ A = v v = A v = B v = C
52 48 51 sylbi A v v = A v = B v = C
53 47 52 syl G USGraph A v E v = A v = B v = C
54 53 ex G USGraph A v E v = A v = B v = C
55 3 54 syl φ A v E v = A v = B v = C
56 55 adantr φ A B E A C E A v E v = A v = B v = C
57 56 com3r v = A φ A B E A C E A v E v = B v = C
58 orc v = B v = B v = C
59 58 2a1d v = B φ A B E A C E A v E v = B v = C
60 olc v = C v = B v = C
61 60 2a1d v = C φ A B E A C E A v E v = B v = C
62 57 59 61 3jaoi v = A v = B v = C φ A B E A C E A v E v = B v = C
63 46 62 sylbi v A B C φ A B E A C E A v E v = B v = C
64 63 com12 φ A B E A C E v A B C A v E v = B v = C
65 44 64 sylbid φ A B E A C E v V A v E v = B v = C
66 65 impd φ A B E A C E v V A v E v = B v = C
67 eqid B = B
68 67 3mix2i B = A B = B B = C
69 5 simp2d φ B Y
70 eltpg B Y B A B C B = A B = B B = C
71 69 70 syl φ B A B C B = A B = B B = C
72 68 71 mpbiri φ B A B C
73 72 adantr φ v = B B A B C
74 eleq1 v = B v A B C B A B C
75 74 bicomd v = B B A B C v A B C
76 75 adantl φ v = B B A B C v A B C
77 73 76 mpbid φ v = B v A B C
78 42 bicomd V = A B C v A B C v V
79 4 78 syl φ v A B C v V
80 79 adantr φ v = B v A B C v V
81 77 80 mpbid φ v = B v V
82 81 ex φ v = B v V
83 82 adantr φ A B E A C E v = B v V
84 83 impcom v = B φ A B E A C E v V
85 preq2 B = v A B = A v
86 85 eleq1d B = v A B E A v E
87 86 eqcoms v = B A B E A v E
88 87 biimpcd A B E v = B A v E
89 88 ad2antrl φ A B E A C E v = B A v E
90 89 impcom v = B φ A B E A C E A v E
91 84 90 jca v = B φ A B E A C E v V A v E
92 91 ex v = B φ A B E A C E v V A v E
93 tpid3g C Z C A B C
94 93 3ad2ant3 A X B Y C Z C A B C
95 5 94 syl φ C A B C
96 95 adantr φ v = C C A B C
97 eleq1 v = C v A B C C A B C
98 97 bicomd v = C C A B C v A B C
99 98 adantl φ v = C C A B C v A B C
100 96 99 mpbid φ v = C v A B C
101 79 adantr φ v = C v A B C v V
102 100 101 mpbid φ v = C v V
103 102 ex φ v = C v V
104 103 adantr φ A B E A C E v = C v V
105 104 impcom v = C φ A B E A C E v V
106 preq2 C = v A C = A v
107 106 eleq1d C = v A C E A v E
108 107 eqcoms v = C A C E A v E
109 108 biimpcd A C E v = C A v E
110 109 ad2antll φ A B E A C E v = C A v E
111 110 impcom v = C φ A B E A C E A v E
112 105 111 jca v = C φ A B E A C E v V A v E
113 112 ex v = C φ A B E A C E v V A v E
114 92 113 jaoi v = B v = C φ A B E A C E v V A v E
115 114 com12 φ A B E A C E v = B v = C v V A v E
116 66 115 impbid φ A B E A C E v V A v E v = B v = C
117 116 abbidv φ A B E A C E v | v V A v E = v | v = B v = C
118 df-rab v V | A v E = v | v V A v E
119 dfpr2 B C = v | v = B v = C
120 117 118 119 3eqtr4g φ A B E A C E v V | A v E = B C
121 41 120 eqtrd φ A B E A C E G NeighbVtx A = B C
122 38 121 impbida φ G NeighbVtx A = B C A B E A C E