Metamath Proof Explorer


Theorem nbbn

Description: Move negation outside of biconditional. Compare Theorem *5.18 of WhiteheadRussell p. 124. (Contributed by NM, 27-Jun-2002) (Proof shortened by Wolf Lammen, 20-Sep-2013)

Ref Expression
Assertion nbbn ¬ φ ψ ¬ φ ψ

Proof

Step Hyp Ref Expression
1 xor3 ¬ φ ψ φ ¬ ψ
2 con2bi φ ¬ ψ ψ ¬ φ
3 bicom ψ ¬ φ ¬ φ ψ
4 1 2 3 3bitrri ¬ φ ψ ¬ φ ψ