Metamath Proof Explorer


Theorem nbcplgr

Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 3-Nov-2020)

Ref Expression
Hypothesis nbcplgr.v V = Vtx G
Assertion nbcplgr G ComplGraph N V G NeighbVtx N = V N

Proof

Step Hyp Ref Expression
1 nbcplgr.v V = Vtx G
2 1 cplgruvtxb G ComplGraph G ComplGraph UnivVtx G = V
3 2 ibi G ComplGraph UnivVtx G = V
4 3 eqcomd G ComplGraph V = UnivVtx G
5 4 eleq2d G ComplGraph N V N UnivVtx G
6 5 biimpa G ComplGraph N V N UnivVtx G
7 1 uvtxnbgrb N V N UnivVtx G G NeighbVtx N = V N
8 7 adantl G ComplGraph N V N UnivVtx G G NeighbVtx N = V N
9 6 8 mpbid G ComplGraph N V G NeighbVtx N = V N