Metamath Proof Explorer


Theorem nbfusgrlevtxm1

Description: The number of neighbors of a vertex is at most the number of vertices of the graph minus 1 in a finite simple graph. (Contributed by AV, 16-Dec-2020) (Proof shortened by AV, 13-Feb-2022)

Ref Expression
Hypothesis hashnbusgrnn0.v V = Vtx G
Assertion nbfusgrlevtxm1 G FinUSGraph U V G NeighbVtx U V 1

Proof

Step Hyp Ref Expression
1 hashnbusgrnn0.v V = Vtx G
2 1 fvexi V V
3 2 difexi V U V
4 1 nbgrssovtx G NeighbVtx U V U
5 4 a1i G FinUSGraph U V G NeighbVtx U V U
6 hashss V U V G NeighbVtx U V U G NeighbVtx U V U
7 3 5 6 sylancr G FinUSGraph U V G NeighbVtx U V U
8 1 fusgrvtxfi G FinUSGraph V Fin
9 hashdifsn V Fin U V V U = V 1
10 9 eqcomd V Fin U V V 1 = V U
11 8 10 sylan G FinUSGraph U V V 1 = V U
12 7 11 breqtrrd G FinUSGraph U V G NeighbVtx U V 1