Metamath Proof Explorer


Theorem nbfusgrlevtxm2

Description: If there is a vertex which is not a neighbor of another vertex, the number of neighbors of the other vertex is at most the number of vertices of the graph minus 2 in a finite simple graph. (Contributed by AV, 16-Dec-2020) (Proof shortened by AV, 13-Feb-2022)

Ref Expression
Hypothesis hashnbusgrnn0.v V = Vtx G
Assertion nbfusgrlevtxm2 G FinUSGraph U V M V M U M G NeighbVtx U G NeighbVtx U V 2

Proof

Step Hyp Ref Expression
1 hashnbusgrnn0.v V = Vtx G
2 1 fvexi V V
3 difexg V V V M U V
4 2 3 mp1i G FinUSGraph U V M V M U M G NeighbVtx U V M U V
5 simpr3 G FinUSGraph U V M V M U M G NeighbVtx U M G NeighbVtx U
6 1 nbgrssvwo2 M G NeighbVtx U G NeighbVtx U V M U
7 5 6 syl G FinUSGraph U V M V M U M G NeighbVtx U G NeighbVtx U V M U
8 hashss V M U V G NeighbVtx U V M U G NeighbVtx U V M U
9 4 7 8 syl2anc G FinUSGraph U V M V M U M G NeighbVtx U G NeighbVtx U V M U
10 1 fusgrvtxfi G FinUSGraph V Fin
11 10 ad2antrr G FinUSGraph U V M V M U M G NeighbVtx U V Fin
12 simpr1 G FinUSGraph U V M V M U M G NeighbVtx U M V
13 simplr G FinUSGraph U V M V M U M G NeighbVtx U U V
14 simpr2 G FinUSGraph U V M V M U M G NeighbVtx U M U
15 hashdifpr V Fin M V U V M U V M U = V 2
16 11 12 13 14 15 syl13anc G FinUSGraph U V M V M U M G NeighbVtx U V M U = V 2
17 9 16 breqtrd G FinUSGraph U V M V M U M G NeighbVtx U G NeighbVtx U V 2