Metamath Proof Explorer


Theorem nbgr0vtxlem

Description: Lemma for nbgr0vtx and nbgr0edg . (Contributed by AV, 15-Nov-2020)

Ref Expression
Hypothesis nbgr0vtxlem.v φ n Vtx G K ¬ e Edg G K n e
Assertion nbgr0vtxlem φ G NeighbVtx K =

Proof

Step Hyp Ref Expression
1 nbgr0vtxlem.v φ n Vtx G K ¬ e Edg G K n e
2 eqid Vtx G = Vtx G
3 eqid Edg G = Edg G
4 2 3 nbgrval K Vtx G G NeighbVtx K = n Vtx G K | e Edg G K n e
5 4 ad2antrl G V K V K Vtx G φ G NeighbVtx K = n Vtx G K | e Edg G K n e
6 1 ad2antll G V K V K Vtx G φ n Vtx G K ¬ e Edg G K n e
7 rabeq0 n Vtx G K | e Edg G K n e = n Vtx G K ¬ e Edg G K n e
8 6 7 sylibr G V K V K Vtx G φ n Vtx G K | e Edg G K n e =
9 5 8 eqtrd G V K V K Vtx G φ G NeighbVtx K =
10 9 expcom K Vtx G φ G V K V G NeighbVtx K =
11 10 ex K Vtx G φ G V K V G NeighbVtx K =
12 11 com23 K Vtx G G V K V φ G NeighbVtx K =
13 df-nel K Vtx G ¬ K Vtx G
14 2 nbgrnvtx0 K Vtx G G NeighbVtx K =
15 13 14 sylbir ¬ K Vtx G G NeighbVtx K =
16 15 a1d ¬ K Vtx G φ G NeighbVtx K =
17 nbgrprc0 ¬ G V K V G NeighbVtx K =
18 17 a1d ¬ G V K V φ G NeighbVtx K =
19 12 16 18 pm2.61nii φ G NeighbVtx K =