Metamath Proof Explorer


Theorem nbgr1vtx

Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020)

Ref Expression
Assertion nbgr1vtx VtxG=1GNeighbVtxK=

Proof

Step Hyp Ref Expression
1 fvex VtxGV
2 hash1snb VtxGVVtxG=1vVtxG=v
3 1 2 ax-mp VtxG=1vVtxG=v
4 ral0 n¬eEdgGKne
5 eleq2 VtxG=vKVtxGKv
6 simpr K=vVtxG=vVtxG=v
7 sneq K=vK=v
8 7 adantr K=vVtxG=vK=v
9 6 8 difeq12d K=vVtxG=vVtxGK=vv
10 difid vv=
11 9 10 eqtrdi K=vVtxG=vVtxGK=
12 11 ex K=vVtxG=vVtxGK=
13 elsni KvK=v
14 12 13 syl11 VtxG=vKvVtxGK=
15 5 14 sylbid VtxG=vKVtxGVtxGK=
16 15 imp VtxG=vKVtxGVtxGK=
17 16 raleqdv VtxG=vKVtxGnVtxGK¬eEdgGKnen¬eEdgGKne
18 4 17 mpbiri VtxG=vKVtxGnVtxGK¬eEdgGKne
19 18 ex VtxG=vKVtxGnVtxGK¬eEdgGKne
20 19 exlimiv vVtxG=vKVtxGnVtxGK¬eEdgGKne
21 3 20 sylbi VtxG=1KVtxGnVtxGK¬eEdgGKne
22 21 impcom KVtxGVtxG=1nVtxGK¬eEdgGKne
23 22 nbgr0vtxlem KVtxGVtxG=1GNeighbVtxK=
24 23 ex KVtxGVtxG=1GNeighbVtxK=
25 df-nel KVtxG¬KVtxG
26 eqid VtxG=VtxG
27 26 nbgrnvtx0 KVtxGGNeighbVtxK=
28 25 27 sylbir ¬KVtxGGNeighbVtxK=
29 28 a1d ¬KVtxGVtxG=1GNeighbVtxK=
30 24 29 pm2.61i VtxG=1GNeighbVtxK=