Metamath Proof Explorer


Theorem nbgr1vtx

Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020)

Ref Expression
Assertion nbgr1vtx Vtx G = 1 G NeighbVtx K =

Proof

Step Hyp Ref Expression
1 fvex Vtx G V
2 hash1snb Vtx G V Vtx G = 1 v Vtx G = v
3 1 2 ax-mp Vtx G = 1 v Vtx G = v
4 ral0 n ¬ e Edg G K n e
5 eleq2 Vtx G = v K Vtx G K v
6 simpr K = v Vtx G = v Vtx G = v
7 sneq K = v K = v
8 7 adantr K = v Vtx G = v K = v
9 6 8 difeq12d K = v Vtx G = v Vtx G K = v v
10 difid v v =
11 9 10 eqtrdi K = v Vtx G = v Vtx G K =
12 11 ex K = v Vtx G = v Vtx G K =
13 elsni K v K = v
14 12 13 syl11 Vtx G = v K v Vtx G K =
15 5 14 sylbid Vtx G = v K Vtx G Vtx G K =
16 15 imp Vtx G = v K Vtx G Vtx G K =
17 16 raleqdv Vtx G = v K Vtx G n Vtx G K ¬ e Edg G K n e n ¬ e Edg G K n e
18 4 17 mpbiri Vtx G = v K Vtx G n Vtx G K ¬ e Edg G K n e
19 18 ex Vtx G = v K Vtx G n Vtx G K ¬ e Edg G K n e
20 19 exlimiv v Vtx G = v K Vtx G n Vtx G K ¬ e Edg G K n e
21 3 20 sylbi Vtx G = 1 K Vtx G n Vtx G K ¬ e Edg G K n e
22 21 impcom K Vtx G Vtx G = 1 n Vtx G K ¬ e Edg G K n e
23 22 nbgr0vtxlem K Vtx G Vtx G = 1 G NeighbVtx K =
24 23 ex K Vtx G Vtx G = 1 G NeighbVtx K =
25 df-nel K Vtx G ¬ K Vtx G
26 eqid Vtx G = Vtx G
27 26 nbgrnvtx0 K Vtx G G NeighbVtx K =
28 25 27 sylbir ¬ K Vtx G G NeighbVtx K =
29 28 a1d ¬ K Vtx G Vtx G = 1 G NeighbVtx K =
30 24 29 pm2.61i Vtx G = 1 G NeighbVtx K =