Metamath Proof Explorer


Theorem nbgrnvtx0

Description: If a class X is not a vertex of a graph G , then it has no neighbors in G . (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 26-Oct-2020)

Ref Expression
Hypothesis nbgrel.v V = Vtx G
Assertion nbgrnvtx0 X V G NeighbVtx X =

Proof

Step Hyp Ref Expression
1 nbgrel.v V = Vtx G
2 csbfv G / g Vtx g = Vtx G
3 1 2 eqtr4i V = G / g Vtx g
4 neleq2 V = G / g Vtx g X V X G / g Vtx g
5 3 4 ax-mp X V X G / g Vtx g
6 5 biimpi X V X G / g Vtx g
7 6 olcd X V G V X G / g Vtx g
8 df-nbgr NeighbVtx = g V , v Vtx g n Vtx g v | e Edg g v n e
9 8 mpoxneldm G V X G / g Vtx g G NeighbVtx X =
10 7 9 syl X V G NeighbVtx X =