Metamath Proof Explorer


Theorem nbgrprc0

Description: The set of neighbors is empty if the graph G or the vertex N are proper classes. (Contributed by AV, 26-Oct-2020)

Ref Expression
Assertion nbgrprc0 ¬GVNVGNeighbVtxN=

Proof

Step Hyp Ref Expression
1 df-nbgr NeighbVtx=gV,vVtxgnVtxgv|eEdggvne
2 1 reldmmpo ReldomNeighbVtx
3 2 ovprc ¬GVNVGNeighbVtxN=