| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nbgr2vtx1edg.v |
|
| 2 |
|
nbgr2vtx1edg.e |
|
| 3 |
1
|
fvexi |
|
| 4 |
|
hash2prb |
|
| 5 |
3 4
|
ax-mp |
|
| 6 |
|
simpr |
|
| 7 |
6
|
ancomd |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
|
id |
|
| 10 |
9
|
necomd |
|
| 11 |
10
|
adantr |
|
| 12 |
11
|
ad2antlr |
|
| 13 |
|
prcom |
|
| 14 |
13
|
eleq1i |
|
| 15 |
14
|
biimpi |
|
| 16 |
|
sseq2 |
|
| 17 |
16
|
adantl |
|
| 18 |
13
|
eqimssi |
|
| 19 |
18
|
a1i |
|
| 20 |
15 17 19
|
rspcedvd |
|
| 21 |
20
|
adantl |
|
| 22 |
1 2
|
nbgrel |
|
| 23 |
8 12 21 22
|
syl3anbrc |
|
| 24 |
6
|
ad2antrr |
|
| 25 |
|
simplrl |
|
| 26 |
|
id |
|
| 27 |
|
sseq2 |
|
| 28 |
27
|
adantl |
|
| 29 |
|
prcom |
|
| 30 |
29
|
eqimssi |
|
| 31 |
30
|
a1i |
|
| 32 |
26 28 31
|
rspcedvd |
|
| 33 |
32
|
adantl |
|
| 34 |
1 2
|
nbgrel |
|
| 35 |
24 25 33 34
|
syl3anbrc |
|
| 36 |
23 35
|
jca |
|
| 37 |
36
|
ex |
|
| 38 |
1 2
|
nbuhgr2vtx1edgblem |
|
| 39 |
38
|
3exp |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
adantld |
|
| 42 |
41
|
imp |
|
| 43 |
42
|
adantld |
|
| 44 |
37 43
|
impbid |
|
| 45 |
|
eleq1 |
|
| 46 |
45
|
adantl |
|
| 47 |
|
id |
|
| 48 |
|
difeq1 |
|
| 49 |
48
|
raleqdv |
|
| 50 |
47 49
|
raleqbidv |
|
| 51 |
|
vex |
|
| 52 |
|
vex |
|
| 53 |
|
sneq |
|
| 54 |
53
|
difeq2d |
|
| 55 |
|
oveq2 |
|
| 56 |
55
|
eleq2d |
|
| 57 |
54 56
|
raleqbidv |
|
| 58 |
|
sneq |
|
| 59 |
58
|
difeq2d |
|
| 60 |
|
oveq2 |
|
| 61 |
60
|
eleq2d |
|
| 62 |
59 61
|
raleqbidv |
|
| 63 |
51 52 57 62
|
ralpr |
|
| 64 |
|
difprsn1 |
|
| 65 |
64
|
raleqdv |
|
| 66 |
|
eleq1 |
|
| 67 |
52 66
|
ralsn |
|
| 68 |
65 67
|
bitrdi |
|
| 69 |
|
difprsn2 |
|
| 70 |
69
|
raleqdv |
|
| 71 |
|
eleq1 |
|
| 72 |
51 71
|
ralsn |
|
| 73 |
70 72
|
bitrdi |
|
| 74 |
68 73
|
anbi12d |
|
| 75 |
63 74
|
bitrid |
|
| 76 |
50 75
|
sylan9bbr |
|
| 77 |
46 76
|
bibi12d |
|
| 78 |
77
|
adantl |
|
| 79 |
44 78
|
mpbird |
|
| 80 |
79
|
ex |
|
| 81 |
80
|
rexlimdvva |
|
| 82 |
5 81
|
biimtrid |
|
| 83 |
82
|
imp |
|