Metamath Proof Explorer


Theorem nbumgr

Description: The set of neighbors of an arbitrary class in a multigraph. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses nbuhgr.v V = Vtx G
nbuhgr.e E = Edg G
Assertion nbumgr G UMGraph G NeighbVtx N = n V | N n E

Proof

Step Hyp Ref Expression
1 nbuhgr.v V = Vtx G
2 nbuhgr.e E = Edg G
3 1 2 nbumgrvtx G UMGraph N V G NeighbVtx N = n V | N n E
4 3 expcom N V G UMGraph G NeighbVtx N = n V | N n E
5 df-nel N V ¬ N V
6 1 nbgrnvtx0 N V G NeighbVtx N =
7 5 6 sylbir ¬ N V G NeighbVtx N =
8 7 adantr ¬ N V G UMGraph G NeighbVtx N =
9 1 2 umgrpredgv G UMGraph N n E N V n V
10 9 simpld G UMGraph N n E N V
11 10 ex G UMGraph N n E N V
12 11 adantl n V G UMGraph N n E N V
13 12 con3d n V G UMGraph ¬ N V ¬ N n E
14 13 ex n V G UMGraph ¬ N V ¬ N n E
15 14 com13 ¬ N V G UMGraph n V ¬ N n E
16 15 imp ¬ N V G UMGraph n V ¬ N n E
17 16 ralrimiv ¬ N V G UMGraph n V ¬ N n E
18 rabeq0 n V | N n E = n V ¬ N n E
19 17 18 sylibr ¬ N V G UMGraph n V | N n E =
20 8 19 eqtr4d ¬ N V G UMGraph G NeighbVtx N = n V | N n E
21 20 ex ¬ N V G UMGraph G NeighbVtx N = n V | N n E
22 4 21 pm2.61i G UMGraph G NeighbVtx N = n V | N n E