| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nbuhgr.v |
|
| 2 |
|
nbuhgr.e |
|
| 3 |
1 2
|
nbgrval |
|
| 4 |
3
|
adantl |
|
| 5 |
|
simp-4l |
|
| 6 |
|
simpr |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpr |
|
| 9 |
|
simpr |
|
| 10 |
9
|
adantr |
|
| 11 |
|
vex |
|
| 12 |
11
|
a1i |
|
| 13 |
|
eldifsn |
|
| 14 |
|
simpr |
|
| 15 |
14
|
necomd |
|
| 16 |
13 15
|
sylbi |
|
| 17 |
16
|
adantl |
|
| 18 |
10 12 17
|
3jca |
|
| 19 |
18
|
adantr |
|
| 20 |
19
|
adantr |
|
| 21 |
1 2
|
upgredgpr |
|
| 22 |
5 7 8 20 21
|
syl31anc |
|
| 23 |
22
|
ex |
|
| 24 |
|
eleq1 |
|
| 25 |
24
|
biimprd |
|
| 26 |
23 6 25
|
syl6ci |
|
| 27 |
26
|
rexlimdva |
|
| 28 |
|
simpr |
|
| 29 |
|
sseq2 |
|
| 30 |
29
|
adantl |
|
| 31 |
|
ssidd |
|
| 32 |
28 30 31
|
rspcedvd |
|
| 33 |
32
|
ex |
|
| 34 |
27 33
|
impbid |
|
| 35 |
34
|
rabbidva |
|
| 36 |
4 35
|
eqtrd |
|