Metamath Proof Explorer


Theorem nbupgr

Description: The set of neighbors of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020) (Proof shortened by AV, 30-Dec-2020)

Ref Expression
Hypotheses nbuhgr.v V = Vtx G
nbuhgr.e E = Edg G
Assertion nbupgr G UPGraph N V G NeighbVtx N = n V N | N n E

Proof

Step Hyp Ref Expression
1 nbuhgr.v V = Vtx G
2 nbuhgr.e E = Edg G
3 1 2 nbgrval N V G NeighbVtx N = n V N | e E N n e
4 3 adantl G UPGraph N V G NeighbVtx N = n V N | e E N n e
5 simp-4l G UPGraph N V n V N e E N n e G UPGraph
6 simpr G UPGraph N V n V N e E e E
7 6 adantr G UPGraph N V n V N e E N n e e E
8 simpr G UPGraph N V n V N e E N n e N n e
9 simpr G UPGraph N V N V
10 9 adantr G UPGraph N V n V N N V
11 vex n V
12 11 a1i G UPGraph N V n V N n V
13 eldifsn n V N n V n N
14 simpr n V n N n N
15 14 necomd n V n N N n
16 13 15 sylbi n V N N n
17 16 adantl G UPGraph N V n V N N n
18 10 12 17 3jca G UPGraph N V n V N N V n V N n
19 18 adantr G UPGraph N V n V N e E N V n V N n
20 19 adantr G UPGraph N V n V N e E N n e N V n V N n
21 1 2 upgredgpr G UPGraph e E N n e N V n V N n N n = e
22 5 7 8 20 21 syl31anc G UPGraph N V n V N e E N n e N n = e
23 22 ex G UPGraph N V n V N e E N n e N n = e
24 eleq1 N n = e N n E e E
25 24 biimprd N n = e e E N n E
26 23 6 25 syl6ci G UPGraph N V n V N e E N n e N n E
27 26 rexlimdva G UPGraph N V n V N e E N n e N n E
28 simpr G UPGraph N V n V N N n E N n E
29 sseq2 e = N n N n e N n N n
30 29 adantl G UPGraph N V n V N N n E e = N n N n e N n N n
31 ssidd G UPGraph N V n V N N n E N n N n
32 28 30 31 rspcedvd G UPGraph N V n V N N n E e E N n e
33 32 ex G UPGraph N V n V N N n E e E N n e
34 27 33 impbid G UPGraph N V n V N e E N n e N n E
35 34 rabbidva G UPGraph N V n V N | e E N n e = n V N | N n E
36 4 35 eqtrd G UPGraph N V G NeighbVtx N = n V N | N n E