Metamath Proof Explorer


Theorem nbusgreledg

Description: A class/vertex is a neighbor of another class/vertex in a simple graph iff the vertices are endpoints of an edge. (Contributed by Alexander van der Vekens, 11-Oct-2017) (Revised by AV, 26-Oct-2020)

Ref Expression
Hypothesis nbusgreledg.e E = Edg G
Assertion nbusgreledg G USGraph N G NeighbVtx K N K E

Proof

Step Hyp Ref Expression
1 nbusgreledg.e E = Edg G
2 eqid Vtx G = Vtx G
3 2 1 nbusgr G USGraph G NeighbVtx K = n Vtx G | K n E
4 3 eleq2d G USGraph N G NeighbVtx K N n Vtx G | K n E
5 1 2 usgrpredgv G USGraph K N E K Vtx G N Vtx G
6 5 simprd G USGraph K N E N Vtx G
7 6 ex G USGraph K N E N Vtx G
8 7 pm4.71rd G USGraph K N E N Vtx G K N E
9 prcom N K = K N
10 9 eleq1i N K E K N E
11 10 a1i G USGraph N K E K N E
12 preq2 n = N K n = K N
13 12 eleq1d n = N K n E K N E
14 13 elrab N n Vtx G | K n E N Vtx G K N E
15 14 a1i G USGraph N n Vtx G | K n E N Vtx G K N E
16 8 11 15 3bitr4rd G USGraph N n Vtx G | K n E N K E
17 4 16 bitrd G USGraph N G NeighbVtx K N K E