Metamath Proof Explorer


Theorem nbusgrf1o0

Description: The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017) (Revised by AV, 28-Oct-2020)

Ref Expression
Hypotheses nbusgrf1o1.v V = Vtx G
nbusgrf1o1.e E = Edg G
nbusgrf1o1.n N = G NeighbVtx U
nbusgrf1o1.i I = e E | U e
nbusgrf1o.f F = n N U n
Assertion nbusgrf1o0 G USGraph U V F : N 1-1 onto I

Proof

Step Hyp Ref Expression
1 nbusgrf1o1.v V = Vtx G
2 nbusgrf1o1.e E = Edg G
3 nbusgrf1o1.n N = G NeighbVtx U
4 nbusgrf1o1.i I = e E | U e
5 nbusgrf1o.f F = n N U n
6 3 eleq2i n N n G NeighbVtx U
7 2 nbusgreledg G USGraph n G NeighbVtx U n U E
8 7 adantr G USGraph U V n G NeighbVtx U n U E
9 prcom n U = U n
10 9 eleq1i n U E U n E
11 10 biimpi n U E U n E
12 11 adantl G USGraph U V n U E U n E
13 prid1g U V U U n
14 13 adantl G USGraph U V U U n
15 14 adantr G USGraph U V n U E U U n
16 eleq2 e = U n U e U U n
17 16 4 elrab2 U n I U n E U U n
18 12 15 17 sylanbrc G USGraph U V n U E U n I
19 18 ex G USGraph U V n U E U n I
20 8 19 sylbid G USGraph U V n G NeighbVtx U U n I
21 6 20 syl5bi G USGraph U V n N U n I
22 21 ralrimiv G USGraph U V n N U n I
23 4 rabeq2i e I e E U e
24 2 3 edgnbusgreu G USGraph U V e E U e ∃! n N e = U n
25 23 24 sylan2b G USGraph U V e I ∃! n N e = U n
26 25 ralrimiva G USGraph U V e I ∃! n N e = U n
27 5 f1ompt F : N 1-1 onto I n N U n I e I ∃! n N e = U n
28 22 26 27 sylanbrc G USGraph U V F : N 1-1 onto I