Metamath Proof Explorer


Theorem nbusgrf1o1

Description: The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 28-Oct-2020)

Ref Expression
Hypotheses nbusgrf1o1.v V=VtxG
nbusgrf1o1.e E=EdgG
nbusgrf1o1.n N=GNeighbVtxU
nbusgrf1o1.i I=eE|Ue
Assertion nbusgrf1o1 GUSGraphUVff:N1-1 ontoI

Proof

Step Hyp Ref Expression
1 nbusgrf1o1.v V=VtxG
2 nbusgrf1o1.e E=EdgG
3 nbusgrf1o1.n N=GNeighbVtxU
4 nbusgrf1o1.i I=eE|Ue
5 3 ovexi NV
6 mptexg NVnNUnV
7 5 6 mp1i GUSGraphUVnNUnV
8 eqid nNUn=nNUn
9 1 2 3 4 8 nbusgrf1o0 GUSGraphUVnNUn:N1-1 ontoI
10 f1oeq1 f=nNUnf:N1-1 ontoInNUn:N1-1 ontoI
11 7 9 10 spcedv GUSGraphUVff:N1-1 ontoI