Metamath Proof Explorer


Theorem nbusgrf1o1

Description: The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 28-Oct-2020)

Ref Expression
Hypotheses nbusgrf1o1.v V = Vtx G
nbusgrf1o1.e E = Edg G
nbusgrf1o1.n N = G NeighbVtx U
nbusgrf1o1.i I = e E | U e
Assertion nbusgrf1o1 G USGraph U V f f : N 1-1 onto I

Proof

Step Hyp Ref Expression
1 nbusgrf1o1.v V = Vtx G
2 nbusgrf1o1.e E = Edg G
3 nbusgrf1o1.n N = G NeighbVtx U
4 nbusgrf1o1.i I = e E | U e
5 3 ovexi N V
6 mptexg N V n N U n V
7 5 6 mp1i G USGraph U V n N U n V
8 eqid n N U n = n N U n
9 1 2 3 4 8 nbusgrf1o0 G USGraph U V n N U n : N 1-1 onto I
10 f1oeq1 f = n N U n f : N 1-1 onto I n N U n : N 1-1 onto I
11 7 9 10 spcedv G USGraph U V f f : N 1-1 onto I