Metamath Proof Explorer


Theorem ncolcom

Description: Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019)

Ref Expression
Hypotheses tglngval.p P = Base G
tglngval.l L = Line 𝒢 G
tglngval.i I = Itv G
tglngval.g φ G 𝒢 Tarski
tglngval.x φ X P
tglngval.y φ Y P
tgcolg.z φ Z P
ncolrot φ ¬ Z X L Y X = Y
Assertion ncolcom φ ¬ Z Y L X Y = X

Proof

Step Hyp Ref Expression
1 tglngval.p P = Base G
2 tglngval.l L = Line 𝒢 G
3 tglngval.i I = Itv G
4 tglngval.g φ G 𝒢 Tarski
5 tglngval.x φ X P
6 tglngval.y φ Y P
7 tgcolg.z φ Z P
8 ncolrot φ ¬ Z X L Y X = Y
9 4 adantr φ Z Y L X Y = X G 𝒢 Tarski
10 6 adantr φ Z Y L X Y = X Y P
11 5 adantr φ Z Y L X Y = X X P
12 7 adantr φ Z Y L X Y = X Z P
13 simpr φ Z Y L X Y = X Z Y L X Y = X
14 1 2 3 9 10 11 12 13 colcom φ Z Y L X Y = X Z X L Y X = Y
15 8 14 mtand φ ¬ Z Y L X Y = X