Metamath Proof Explorer


Theorem ncolncol

Description: Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses tglineintmo.p P = Base G
tglineintmo.i I = Itv G
tglineintmo.l L = Line 𝒢 G
tglineintmo.g φ G 𝒢 Tarski
tglineinteq.a φ A P
tglineinteq.b φ B P
tglineinteq.c φ C P
tglineinteq.d φ D P
tglineinteq.e φ ¬ A B L C B = C
ncolncol.1 φ D A L B
ncolncol.2 φ D B
Assertion ncolncol φ ¬ D B L C B = C

Proof

Step Hyp Ref Expression
1 tglineintmo.p P = Base G
2 tglineintmo.i I = Itv G
3 tglineintmo.l L = Line 𝒢 G
4 tglineintmo.g φ G 𝒢 Tarski
5 tglineinteq.a φ A P
6 tglineinteq.b φ B P
7 tglineinteq.c φ C P
8 tglineinteq.d φ D P
9 tglineinteq.e φ ¬ A B L C B = C
10 ncolncol.1 φ D A L B
11 ncolncol.2 φ D B
12 4 adantr φ D B L C B = C G 𝒢 Tarski
13 5 adantr φ D B L C B = C A P
14 6 adantr φ D B L C B = C B P
15 7 adantr φ D B L C B = C C P
16 4 ad2antrr φ D B L C B = C C D L B G 𝒢 Tarski
17 5 ad2antrr φ D B L C B = C C D L B A P
18 6 ad2antrr φ D B L C B = C C D L B B P
19 7 ad2antrr φ D B L C B = C C D L B C P
20 1 3 2 4 5 6 10 tglngne φ A B
21 20 ad2antrr φ D B L C B = C C D L B A B
22 8 ad2antrr φ D B L C B = C C D L B D P
23 11 necomd φ B D
24 23 ad2antrr φ D B L C B = C C D L B B D
25 simpr φ D B L C B = C C D L B C D L B
26 1 2 3 16 18 22 19 24 25 lncom φ D B L C B = C C D L B C B L D
27 20 necomd φ B A
28 1 2 3 4 6 5 8 27 10 lncom φ D B L A
29 1 2 3 4 6 5 27 8 11 28 tglineelsb2 φ B L A = B L D
30 29 ad2antrr φ D B L C B = C C D L B B L A = B L D
31 26 30 eleqtrrd φ D B L C B = C C D L B C B L A
32 1 2 3 16 17 18 19 21 31 lncom φ D B L C B = C C D L B C A L B
33 32 orcd φ D B L C B = C C D L B C A L B A = B
34 simpr φ D B L C B = C D = B D = B
35 11 ad2antrr φ D B L C B = C D = B D B
36 34 35 pm2.21ddne φ D B L C B = C D = B C A L B A = B
37 8 adantr φ D B L C B = C D P
38 simpr φ D B L C B = C D B L C B = C
39 1 3 2 12 14 15 37 38 colrot2 φ D B L C B = C C D L B D = B
40 33 36 39 mpjaodan φ D B L C B = C C A L B A = B
41 1 3 2 12 13 14 15 40 colrot1 φ D B L C B = C A B L C B = C
42 9 41 mtand φ ¬ D B L C B = C