Metamath Proof Explorer


Theorem ncolne1

Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019)

Ref Expression
Hypotheses tglineelsb2.p B = Base G
tglineelsb2.i I = Itv G
tglineelsb2.l L = Line 𝒢 G
tglineelsb2.g φ G 𝒢 Tarski
ncolne.x φ X B
ncolne.y φ Y B
ncolne.z φ Z B
ncolne.2 φ ¬ X Y L Z Y = Z
Assertion ncolne1 φ X Y

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B = Base G
2 tglineelsb2.i I = Itv G
3 tglineelsb2.l L = Line 𝒢 G
4 tglineelsb2.g φ G 𝒢 Tarski
5 ncolne.x φ X B
6 ncolne.y φ Y B
7 ncolne.z φ Z B
8 ncolne.2 φ ¬ X Y L Z Y = Z
9 4 adantr φ X = Y G 𝒢 Tarski
10 6 adantr φ X = Y Y B
11 7 adantr φ X = Y Z B
12 5 adantr φ X = Y X B
13 eqid dist G = dist G
14 1 13 2 9 12 11 tgbtwntriv1 φ X = Y X X I Z
15 simpr φ X = Y X = Y
16 15 oveq1d φ X = Y X I Z = Y I Z
17 14 16 eleqtrd φ X = Y X Y I Z
18 1 3 2 9 10 11 12 17 btwncolg1 φ X = Y X Y L Z Y = Z
19 8 18 mtand φ ¬ X = Y
20 19 neqned φ X Y