Metamath Proof Explorer


Theorem ncolne2

Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019) TODO (NM): maybe ncolne2 could be simplified out and deleted, replaced by ncolcom .

Ref Expression
Hypotheses tglineelsb2.p B = Base G
tglineelsb2.i I = Itv G
tglineelsb2.l L = Line 𝒢 G
tglineelsb2.g φ G 𝒢 Tarski
ncolne.x φ X B
ncolne.y φ Y B
ncolne.z φ Z B
ncolne.2 φ ¬ X Y L Z Y = Z
Assertion ncolne2 φ X Z

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B = Base G
2 tglineelsb2.i I = Itv G
3 tglineelsb2.l L = Line 𝒢 G
4 tglineelsb2.g φ G 𝒢 Tarski
5 ncolne.x φ X B
6 ncolne.y φ Y B
7 ncolne.z φ Z B
8 ncolne.2 φ ¬ X Y L Z Y = Z
9 1 3 2 4 6 7 5 8 ncolcom φ ¬ X Z L Y Z = Y
10 1 2 3 4 5 7 6 9 ncolne1 φ X Z