Metamath Proof Explorer


Theorem nconnsubb

Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014) (Proof shortened by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses nconnsubb.2 φ J TopOn X
nconnsubb.3 φ A X
nconnsubb.4 φ U J
nconnsubb.5 φ V J
nconnsubb.6 φ U A
nconnsubb.7 φ V A
nconnsubb.8 φ U V A =
nconnsubb.9 φ A U V
Assertion nconnsubb φ ¬ J 𝑡 A Conn

Proof

Step Hyp Ref Expression
1 nconnsubb.2 φ J TopOn X
2 nconnsubb.3 φ A X
3 nconnsubb.4 φ U J
4 nconnsubb.5 φ V J
5 nconnsubb.6 φ U A
6 nconnsubb.7 φ V A
7 nconnsubb.8 φ U V A =
8 nconnsubb.9 φ A U V
9 connsuba J TopOn X A X J 𝑡 A Conn x J y J x A y A x y A = x y A A
10 1 2 9 syl2anc φ J 𝑡 A Conn x J y J x A y A x y A = x y A A
11 5 6 7 3jca φ U A V A U V A =
12 ineq1 x = U x A = U A
13 12 neeq1d x = U x A U A
14 ineq1 x = U x y = U y
15 14 ineq1d x = U x y A = U y A
16 15 eqeq1d x = U x y A = U y A =
17 13 16 3anbi13d x = U x A y A x y A = U A y A U y A =
18 uneq1 x = U x y = U y
19 18 ineq1d x = U x y A = U y A
20 19 neeq1d x = U x y A A U y A A
21 17 20 imbi12d x = U x A y A x y A = x y A A U A y A U y A = U y A A
22 ineq1 y = V y A = V A
23 22 neeq1d y = V y A V A
24 ineq2 y = V U y = U V
25 24 ineq1d y = V U y A = U V A
26 25 eqeq1d y = V U y A = U V A =
27 23 26 3anbi23d y = V U A y A U y A = U A V A U V A =
28 sseqin2 A U y U y A = A
29 28 necon3bbii ¬ A U y U y A A
30 uneq2 y = V U y = U V
31 30 sseq2d y = V A U y A U V
32 31 notbid y = V ¬ A U y ¬ A U V
33 29 32 bitr3id y = V U y A A ¬ A U V
34 27 33 imbi12d y = V U A y A U y A = U y A A U A V A U V A = ¬ A U V
35 21 34 rspc2v U J V J x J y J x A y A x y A = x y A A U A V A U V A = ¬ A U V
36 3 4 35 syl2anc φ x J y J x A y A x y A = x y A A U A V A U V A = ¬ A U V
37 11 36 mpid φ x J y J x A y A x y A = x y A A ¬ A U V
38 10 37 sylbid φ J 𝑡 A Conn ¬ A U V
39 8 38 mt2d φ ¬ J 𝑡 A Conn