Metamath Proof Explorer


Theorem ncoprmlnprm

Description: If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020)

Ref Expression
Assertion ncoprmlnprm A B A < B 1 < A gcd B B

Proof

Step Hyp Ref Expression
1 ncoprmgcdgt1b A B i 2 i A i B 1 < A gcd B
2 1 bicomd A B 1 < A gcd B i 2 i A i B
3 2 3adant3 A B A < B 1 < A gcd B i 2 i A i B
4 simp1 A B A < B A
5 eluzelz i 2 i
6 4 5 anim12ci A B A < B i 2 i A
7 dvdsle i A i A i A
8 6 7 syl A B A < B i 2 i A i A
9 nnre A A
10 nnre B B
11 eluzelre i 2 i
12 9 10 11 3anim123i A B i 2 A B i
13 3anrot i A B A B i
14 12 13 sylibr A B i 2 i A B
15 lelttr i A B i A A < B i < B
16 14 15 syl A B i 2 i A A < B i < B
17 16 expcomd A B i 2 A < B i A i < B
18 17 3exp A B i 2 A < B i A i < B
19 18 com34 A B A < B i 2 i A i < B
20 19 3imp1 A B A < B i 2 i A i < B
21 20 imp A B A < B i 2 i A i < B
22 nnz B B
23 22 3ad2ant2 A B A < B B
24 23 5 anim12ci A B A < B i 2 i B
25 24 adantr A B A < B i 2 i A i B
26 zltlem1 i B i < B i B 1
27 25 26 syl A B A < B i 2 i A i < B i B 1
28 21 27 mpbid A B A < B i 2 i A i B 1
29 28 ex A B A < B i 2 i A i B 1
30 8 29 syldc i A A B A < B i 2 i B 1
31 30 adantr i A i B A B A < B i 2 i B 1
32 31 impcom A B A < B i 2 i A i B i B 1
33 peano2zm B B 1
34 22 33 syl B B 1
35 34 3ad2ant2 A B A < B B 1
36 35 anim1ci A B A < B i 2 i 2 B 1
37 36 adantr A B A < B i 2 i A i B i 2 B 1
38 elfz5 i 2 B 1 i 2 B 1 i B 1
39 37 38 syl A B A < B i 2 i A i B i 2 B 1 i B 1
40 32 39 mpbird A B A < B i 2 i A i B i 2 B 1
41 breq1 j = i j B i B
42 41 adantl A B A < B i 2 i A i B j = i j B i B
43 simprr A B A < B i 2 i A i B i B
44 40 42 43 rspcedvd A B A < B i 2 i A i B j 2 B 1 j B
45 rexnal j 2 B 1 ¬ ¬ j B ¬ j 2 B 1 ¬ j B
46 notnotb j B ¬ ¬ j B
47 46 bicomi ¬ ¬ j B j B
48 47 rexbii j 2 B 1 ¬ ¬ j B j 2 B 1 j B
49 45 48 bitr3i ¬ j 2 B 1 ¬ j B j 2 B 1 j B
50 44 49 sylibr A B A < B i 2 i A i B ¬ j 2 B 1 ¬ j B
51 50 olcd A B A < B i 2 i A i B ¬ B 2 ¬ j 2 B 1 ¬ j B
52 df-nel B ¬ B
53 ianor ¬ B 2 j 2 B 1 ¬ j B ¬ B 2 ¬ j 2 B 1 ¬ j B
54 isprm3 B B 2 j 2 B 1 ¬ j B
55 53 54 xchnxbir ¬ B ¬ B 2 ¬ j 2 B 1 ¬ j B
56 52 55 bitri B ¬ B 2 ¬ j 2 B 1 ¬ j B
57 51 56 sylibr A B A < B i 2 i A i B B
58 57 rexlimdva2 A B A < B i 2 i A i B B
59 3 58 sylbid A B A < B 1 < A gcd B B