Metamath Proof Explorer


Theorem nd2

Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 1-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion nd2 x x = y ¬ x z y

Proof

Step Hyp Ref Expression
1 elirrv ¬ z z
2 stdpc4 y z y z y z y
3 1 nfnth y z z
4 elequ2 y = z z y z z
5 3 4 sbie z y z y z z
6 2 5 sylib y z y z z
7 1 6 mto ¬ y z y
8 axc11 x x = y x z y y z y
9 7 8 mtoi x x = y ¬ x z y