Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Axioms with no distinct variable requirements
nd3
Next ⟩
nd4
Metamath Proof Explorer
Ascii
Unicode
Theorem
nd3
Description:
A lemma for proving conditionless ZFC axioms.
(Contributed by
NM
, 2-Jan-2002)
Ref
Expression
Assertion
nd3
⊢
∀
x
x
=
y
→
¬
∀
z
x
∈
y
Proof
Step
Hyp
Ref
Expression
1
elirrv
⊢
¬
x
∈
x
2
elequ2
⊢
x
=
y
→
x
∈
x
↔
x
∈
y
3
1
2
mtbii
⊢
x
=
y
→
¬
x
∈
y
4
3
sps
⊢
∀
x
x
=
y
→
¬
x
∈
y
5
sp
⊢
∀
z
x
∈
y
→
x
∈
y
6
4
5
nsyl
⊢
∀
x
x
=
y
→
¬
∀
z
x
∈
y