Metamath Proof Explorer


Theorem nd3

Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002)

Ref Expression
Assertion nd3 x x = y ¬ z x y

Proof

Step Hyp Ref Expression
1 elirrv ¬ x x
2 elequ2 x = y x x x y
3 1 2 mtbii x = y ¬ x y
4 3 sps x x = y ¬ x y
5 sp z x y x y
6 4 5 nsyl x x = y ¬ z x y