Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
ndisj
Next ⟩
difin0ss
Metamath Proof Explorer
Ascii
Unicode
Theorem
ndisj
Description:
Express that an intersection is not empty.
(Contributed by
RP
, 16-Apr-2020)
Ref
Expression
Assertion
ndisj
⊢
A
∩
B
≠
∅
↔
∃
x
x
∈
A
∧
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
n0
⊢
A
∩
B
≠
∅
↔
∃
x
x
∈
A
∩
B
2
elin
⊢
x
∈
A
∩
B
↔
x
∈
A
∧
x
∈
B
3
2
exbii
⊢
∃
x
x
∈
A
∩
B
↔
∃
x
x
∈
A
∧
x
∈
B
4
1
3
bitri
⊢
A
∩
B
≠
∅
↔
∃
x
x
∈
A
∧
x
∈
B