Metamath Proof Explorer


Theorem ndmioo

Description: The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion ndmioo ¬ A * B * A B =

Proof

Step Hyp Ref Expression
1 df-ioo . = x * , y * z * | x < z z < y
2 1 ixxf . : * × * 𝒫 *
3 2 fdmi dom . = * × *
4 3 ndmov ¬ A * B * A B =