Metamath Proof Explorer


Theorem ndmovdistr

Description: Any operation is distributive outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995)

Ref Expression
Hypotheses ndmov.1 dom F = S × S
ndmov.5 ¬ S
ndmov.6 dom G = S × S
Assertion ndmovdistr ¬ A S B S C S A G B F C = A G B F A G C

Proof

Step Hyp Ref Expression
1 ndmov.1 dom F = S × S
2 ndmov.5 ¬ S
3 ndmov.6 dom G = S × S
4 1 2 ndmovrcl B F C S B S C S
5 4 anim2i A S B F C S A S B S C S
6 3anass A S B S C S A S B S C S
7 5 6 sylibr A S B F C S A S B S C S
8 3 ndmov ¬ A S B F C S A G B F C =
9 7 8 nsyl5 ¬ A S B S C S A G B F C =
10 3 2 ndmovrcl A G B S A S B S
11 3 2 ndmovrcl A G C S A S C S
12 10 11 anim12i A G B S A G C S A S B S A S C S
13 anandi3 A S B S C S A S B S A S C S
14 12 13 sylibr A G B S A G C S A S B S C S
15 1 ndmov ¬ A G B S A G C S A G B F A G C =
16 14 15 nsyl5 ¬ A S B S C S A G B F A G C =
17 9 16 eqtr4d ¬ A S B S C S A G B F C = A G B F A G C