Metamath Proof Explorer


Theorem ndmovg

Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008)

Ref Expression
Assertion ndmovg dom F = R × S ¬ A R B S A F B =

Proof

Step Hyp Ref Expression
1 df-ov A F B = F A B
2 eleq2 dom F = R × S A B dom F A B R × S
3 opelxp A B R × S A R B S
4 2 3 bitrdi dom F = R × S A B dom F A R B S
5 4 notbid dom F = R × S ¬ A B dom F ¬ A R B S
6 ndmfv ¬ A B dom F F A B =
7 5 6 syl6bir dom F = R × S ¬ A R B S F A B =
8 7 imp dom F = R × S ¬ A R B S F A B =
9 1 8 eqtrid dom F = R × S ¬ A R B S A F B =