Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
ndmovg
Next ⟩
ndmov
Metamath Proof Explorer
Ascii
Unicode
Theorem
ndmovg
Description:
The value of an operation outside its domain.
(Contributed by
NM
, 28-Mar-2008)
Ref
Expression
Assertion
ndmovg
⊢
dom
⁡
F
=
R
×
S
∧
¬
A
∈
R
∧
B
∈
S
→
A
F
B
=
∅
Proof
Step
Hyp
Ref
Expression
1
df-ov
⊢
A
F
B
=
F
⁡
A
B
2
eleq2
⊢
dom
⁡
F
=
R
×
S
→
A
B
∈
dom
⁡
F
↔
A
B
∈
R
×
S
3
opelxp
⊢
A
B
∈
R
×
S
↔
A
∈
R
∧
B
∈
S
4
2
3
bitrdi
⊢
dom
⁡
F
=
R
×
S
→
A
B
∈
dom
⁡
F
↔
A
∈
R
∧
B
∈
S
5
4
notbid
⊢
dom
⁡
F
=
R
×
S
→
¬
A
B
∈
dom
⁡
F
↔
¬
A
∈
R
∧
B
∈
S
6
ndmfv
⊢
¬
A
B
∈
dom
⁡
F
→
F
⁡
A
B
=
∅
7
5
6
syl6bir
⊢
dom
⁡
F
=
R
×
S
→
¬
A
∈
R
∧
B
∈
S
→
F
⁡
A
B
=
∅
8
7
imp
⊢
dom
⁡
F
=
R
×
S
∧
¬
A
∈
R
∧
B
∈
S
→
F
⁡
A
B
=
∅
9
1
8
eqtrid
⊢
dom
⁡
F
=
R
×
S
∧
¬
A
∈
R
∧
B
∈
S
→
A
F
B
=
∅