Metamath Proof Explorer


Theorem ndmovord

Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996)

Ref Expression
Hypotheses ndmov.1 dom F = S × S
ndmovord.4 R S × S
ndmovord.5 ¬ S
ndmovord.6 A S B S C S A R B C F A R C F B
Assertion ndmovord C S A R B C F A R C F B

Proof

Step Hyp Ref Expression
1 ndmov.1 dom F = S × S
2 ndmovord.4 R S × S
3 ndmovord.5 ¬ S
4 ndmovord.6 A S B S C S A R B C F A R C F B
5 4 3expia A S B S C S A R B C F A R C F B
6 2 brel A R B A S B S
7 2 brel C F A R C F B C F A S C F B S
8 1 3 ndmovrcl C F A S C S A S
9 8 simprd C F A S A S
10 1 3 ndmovrcl C F B S C S B S
11 10 simprd C F B S B S
12 9 11 anim12i C F A S C F B S A S B S
13 7 12 syl C F A R C F B A S B S
14 6 13 pm5.21ni ¬ A S B S A R B C F A R C F B
15 14 a1d ¬ A S B S C S A R B C F A R C F B
16 5 15 pm2.61i C S A R B C F A R C F B