Metamath Proof Explorer


Theorem ndmovord

Description: Elimination of redundant antecedents in an ordering law. (Contributed by NM, 7-Mar-1996)

Ref Expression
Hypotheses ndmov.1 domF=S×S
ndmovord.4 RS×S
ndmovord.5 ¬S
ndmovord.6 ASBSCSARBCFARCFB
Assertion ndmovord CSARBCFARCFB

Proof

Step Hyp Ref Expression
1 ndmov.1 domF=S×S
2 ndmovord.4 RS×S
3 ndmovord.5 ¬S
4 ndmovord.6 ASBSCSARBCFARCFB
5 4 3expia ASBSCSARBCFARCFB
6 2 brel ARBASBS
7 2 brel CFARCFBCFASCFBS
8 1 3 ndmovrcl CFASCSAS
9 8 simprd CFASAS
10 1 3 ndmovrcl CFBSCSBS
11 10 simprd CFBSBS
12 9 11 anim12i CFASCFBSASBS
13 7 12 syl CFARCFBASBS
14 6 13 pm5.21ni ¬ASBSARBCFARCFB
15 14 a1d ¬ASBSCSARBCFARCFB
16 5 15 pm2.61i CSARBCFARCFB