Metamath Proof Explorer


Theorem ndmovordi

Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998)

Ref Expression
Hypotheses ndmovordi.2 dom F = S × S
ndmovordi.4 R S × S
ndmovordi.5 ¬ S
ndmovordi.6 C S A R B C F A R C F B
Assertion ndmovordi C F A R C F B A R B

Proof

Step Hyp Ref Expression
1 ndmovordi.2 dom F = S × S
2 ndmovordi.4 R S × S
3 ndmovordi.5 ¬ S
4 ndmovordi.6 C S A R B C F A R C F B
5 2 brel C F A R C F B C F A S C F B S
6 5 simpld C F A R C F B C F A S
7 1 3 ndmovrcl C F A S C S A S
8 7 simpld C F A S C S
9 6 8 syl C F A R C F B C S
10 4 biimprd C S C F A R C F B A R B
11 9 10 mpcom C F A R C F B A R B