Metamath Proof Explorer


Theorem ndmovrcl

Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996)

Ref Expression
Hypotheses ndmov.1 dom F = S × S
ndmovrcl.3 ¬ S
Assertion ndmovrcl A F B S A S B S

Proof

Step Hyp Ref Expression
1 ndmov.1 dom F = S × S
2 ndmovrcl.3 ¬ S
3 1 ndmov ¬ A S B S A F B =
4 3 eleq1d ¬ A S B S A F B S S
5 2 4 mtbiri ¬ A S B S ¬ A F B S
6 5 con4i A F B S A S B S