Metamath Proof Explorer


Theorem ndvdsadd

Description: Corollary of the division algorithm. If an integer D greater than 1 divides N , then it does not divide any of N + 1 , N + 2 ... N + ( D - 1 ) . (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion ndvdsadd N D K K < D D N ¬ D N + K

Proof

Step Hyp Ref Expression
1 nnre K K
2 nnre D D
3 posdif K D K < D 0 < D K
4 1 2 3 syl2anr D K K < D 0 < D K
5 4 pm5.32i D K K < D D K 0 < D K
6 nnz D D
7 nnz K K
8 zsubcl D K D K
9 6 7 8 syl2an D K D K
10 elnnz D K D K 0 < D K
11 10 biimpri D K 0 < D K D K
12 9 11 sylan D K 0 < D K D K
13 5 12 sylbi D K K < D D K
14 13 anasss D K K < D D K
15 nngt0 K 0 < K
16 ltsubpos K D 0 < K D K < D
17 1 2 16 syl2an K D 0 < K D K < D
18 17 biimpd K D 0 < K D K < D
19 18 expcom D K 0 < K D K < D
20 15 19 mpdi D K D K < D
21 20 imp D K D K < D
22 21 adantrr D K K < D D K < D
23 14 22 jca D K K < D D K D K < D
24 23 3adant1 N D K K < D D K D K < D
25 ndvdssub N D D K D K < D D N ¬ D N D K
26 24 25 syld3an3 N D K K < D D N ¬ D N D K
27 zaddcl N K N + K
28 7 27 sylan2 N K N + K
29 dvdssubr D N + K D N + K D N + K - D
30 6 28 29 syl2an D N K D N + K D N + K - D
31 30 an12s N D K D N + K D N + K - D
32 31 3impb N D K D N + K D N + K - D
33 zcn N N
34 nncn D D
35 nncn K K
36 subsub3 N D K N D K = N + K - D
37 33 34 35 36 syl3an N D K N D K = N + K - D
38 37 breq2d N D K D N D K D N + K - D
39 32 38 bitr4d N D K D N + K D N D K
40 39 notbid N D K ¬ D N + K ¬ D N D K
41 40 3adant3r N D K K < D ¬ D N + K ¬ D N D K
42 26 41 sylibrd N D K K < D D N ¬ D N + K