Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
The division algorithm
ndvdsi
Next ⟩
flodddiv4
Metamath Proof Explorer
Ascii
Unicode
Theorem
ndvdsi
Description:
A quick test for non-divisibility.
(Contributed by
Mario Carneiro
, 18-Feb-2014)
Ref
Expression
Hypotheses
ndvdsi.1
⊢
A
∈
ℕ
ndvdsi.2
⊢
Q
∈
ℕ
0
ndvdsi.3
⊢
R
∈
ℕ
ndvdsi.4
⊢
A
⁢
Q
+
R
=
B
ndvdsi.5
⊢
R
<
A
Assertion
ndvdsi
⊢
¬
A
∥
B
Proof
Step
Hyp
Ref
Expression
1
ndvdsi.1
⊢
A
∈
ℕ
2
ndvdsi.2
⊢
Q
∈
ℕ
0
3
ndvdsi.3
⊢
R
∈
ℕ
4
ndvdsi.4
⊢
A
⁢
Q
+
R
=
B
5
ndvdsi.5
⊢
R
<
A
6
1
nnzi
⊢
A
∈
ℤ
7
2
nn0zi
⊢
Q
∈
ℤ
8
dvdsmul1
⊢
A
∈
ℤ
∧
Q
∈
ℤ
→
A
∥
A
⁢
Q
9
6
7
8
mp2an
⊢
A
∥
A
⁢
Q
10
zmulcl
⊢
A
∈
ℤ
∧
Q
∈
ℤ
→
A
⁢
Q
∈
ℤ
11
6
7
10
mp2an
⊢
A
⁢
Q
∈
ℤ
12
3
5
pm3.2i
⊢
R
∈
ℕ
∧
R
<
A
13
ndvdsadd
⊢
A
⁢
Q
∈
ℤ
∧
A
∈
ℕ
∧
R
∈
ℕ
∧
R
<
A
→
A
∥
A
⁢
Q
→
¬
A
∥
A
⁢
Q
+
R
14
11
1
12
13
mp3an
⊢
A
∥
A
⁢
Q
→
¬
A
∥
A
⁢
Q
+
R
15
9
14
ax-mp
⊢
¬
A
∥
A
⁢
Q
+
R
16
4
breq2i
⊢
A
∥
A
⁢
Q
+
R
↔
A
∥
B
17
15
16
mtbi
⊢
¬
A
∥
B