Metamath Proof Explorer


Theorem ndvdsi

Description: A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses ndvdsi.1 A
ndvdsi.2 Q 0
ndvdsi.3 R
ndvdsi.4 A Q + R = B
ndvdsi.5 R < A
Assertion ndvdsi ¬ A B

Proof

Step Hyp Ref Expression
1 ndvdsi.1 A
2 ndvdsi.2 Q 0
3 ndvdsi.3 R
4 ndvdsi.4 A Q + R = B
5 ndvdsi.5 R < A
6 1 nnzi A
7 2 nn0zi Q
8 dvdsmul1 A Q A A Q
9 6 7 8 mp2an A A Q
10 zmulcl A Q A Q
11 6 7 10 mp2an A Q
12 3 5 pm3.2i R R < A
13 ndvdsadd A Q A R R < A A A Q ¬ A A Q + R
14 11 1 12 13 mp3an A A Q ¬ A A Q + R
15 9 14 ax-mp ¬ A A Q + R
16 4 breq2i A A Q + R A B
17 15 16 mtbi ¬ A B