Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
The division algorithm
ndvdsp1
Metamath Proof Explorer
Description: Special case of ndvdsadd . If an integer D greater than 1
divides N , it does not divide N + 1 . (Contributed by Paul
Chapman , 31-Mar-2011)
Ref
Expression
Assertion
ndvdsp1
⊢ N ∈ ℤ ∧ D ∈ ℕ ∧ 1 < D → D ∥ N → ¬ D ∥ N + 1
Proof
Step
Hyp
Ref
Expression
1
1nn
⊢ 1 ∈ ℕ
2
1
jctl
⊢ 1 < D → 1 ∈ ℕ ∧ 1 < D
3
ndvdsadd
⊢ N ∈ ℤ ∧ D ∈ ℕ ∧ 1 ∈ ℕ ∧ 1 < D → D ∥ N → ¬ D ∥ N + 1
4
2 3
syl3an3
⊢ N ∈ ℤ ∧ D ∈ ℕ ∧ 1 < D → D ∥ N → ¬ D ∥ N + 1