Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ne0gt0
Next ⟩
lecasei
Metamath Proof Explorer
Ascii
Unicode
Theorem
ne0gt0
Description:
A nonzero nonnegative number is positive.
(Contributed by
NM
, 20-Nov-2007)
Ref
Expression
Assertion
ne0gt0
⊢
A
∈
ℝ
∧
0
≤
A
→
A
≠
0
↔
0
<
A
Proof
Step
Hyp
Ref
Expression
1
0re
⊢
0
∈
ℝ
2
lttri2
⊢
A
∈
ℝ
∧
0
∈
ℝ
→
A
≠
0
↔
A
<
0
∨
0
<
A
3
1
2
mpan2
⊢
A
∈
ℝ
→
A
≠
0
↔
A
<
0
∨
0
<
A
4
3
adantr
⊢
A
∈
ℝ
∧
0
≤
A
→
A
≠
0
↔
A
<
0
∨
0
<
A
5
lenlt
⊢
0
∈
ℝ
∧
A
∈
ℝ
→
0
≤
A
↔
¬
A
<
0
6
1
5
mpan
⊢
A
∈
ℝ
→
0
≤
A
↔
¬
A
<
0
7
6
biimpa
⊢
A
∈
ℝ
∧
0
≤
A
→
¬
A
<
0
8
biorf
⊢
¬
A
<
0
→
0
<
A
↔
A
<
0
∨
0
<
A
9
7
8
syl
⊢
A
∈
ℝ
∧
0
≤
A
→
0
<
A
↔
A
<
0
∨
0
<
A
10
4
9
bitr4d
⊢
A
∈
ℝ
∧
0
≤
A
→
A
≠
0
↔
0
<
A