Metamath Proof Explorer


Theorem ne0gt0

Description: A nonzero nonnegative number is positive. (Contributed by NM, 20-Nov-2007)

Ref Expression
Assertion ne0gt0 A 0 A A 0 0 < A

Proof

Step Hyp Ref Expression
1 0re 0
2 lttri2 A 0 A 0 A < 0 0 < A
3 1 2 mpan2 A A 0 A < 0 0 < A
4 3 adantr A 0 A A 0 A < 0 0 < A
5 lenlt 0 A 0 A ¬ A < 0
6 1 5 mpan A 0 A ¬ A < 0
7 6 biimpa A 0 A ¬ A < 0
8 biorf ¬ A < 0 0 < A A < 0 0 < A
9 7 8 syl A 0 A 0 < A A < 0 0 < A
10 4 9 bitr4d A 0 A A 0 0 < A